Proof of 0<1 in an Ordered Field Here we prove that 0<1 in any ordered field. This proof makes use of six previously established lemmas. Here we make use of the Trichotomy Rule and the fact that 0 and 1 are distinct to establish that either 0<1 or 1<0. We then suppose that 1<0 is true and obtain a contradiction. Then we are left with 0<1. Notation: P & Q --> P and Q P | Q --> P or Q ~P --> not P Set(x) --> x is a set Field Axioms: 1 Set(f) & ALL(a):ALL(b):[a f & b f => a+b f] & ALL(a):ALL(b):ALL(c):[a f & b f & c f => a+b+c=a+(b+c)] & ALL(a):ALL(b):[a f & b f => a+b=b+a] & 0 f & ALL(a):[a f => a+0=a] & ALL(a):[a f => _a f] & ALL(a):[a f => a+_a=0] & ALL(a):ALL(b):[a f & b f => a*b f] & ALL(a):ALL(b):ALL(c):[a f & b f & c f => a*b*c=a*(b*c)] & ALL(a):ALL(b):[a f & b f => a*b=b*a] & ALL(a):ALL(b):ALL(c):[a f & b f & c f => a*(b+c)=a*b+a*c] & 1 f & ~0=1 & ALL(a):[a f => a*1=a] & ALL(a):[a f & ~a=0 => 1/a f] & ALL(a):[a f => a*(1/a)=1] Premise Splitting out individual axioms... f is a set 2 Set(f) Split, 1 Define: + operator on f 3 ALL(a):ALL(b):[a f & b f => a+b f] Split, 1 + is associative 4 ALL(a):ALL(b):ALL(c):[a f & b f & c f => a+b+c=a+(b+c)] Split, 1 + is commutative 5 ALL(a):ALL(b):[a f & b f => a+b=b+a] Split, 1 Define: 0 6 0 f Split, 1 7 ALL(a):[a f => a+0=a] Split, 1 Define: _ operator on f 8 ALL(a):[a f => _a f] Split, 1 9 ALL(a):[a f => a+_a=0] Split, 1 Define: * operator on f 10 ALL(a):ALL(b):[a f & b f => a*b f] Split, 1 * is associative 11 ALL(a):ALL(b):ALL(c):[a f & b f & c f => a*b*c=a*(b*c)] Split, 1 * is commutative 12 ALL(a):ALL(b):[a f & b f => a*b=b*a] Split, 1 * is distributive over + 13 ALL(a):ALL(b):ALL(c):[a f & b f & c f => a*(b+c)=a*b+a*c] Split, 1 Define: 1 14 1 f Split, 1 15 ~0=1 Split, 1 16 ALL(a):[a f => a*1=a] Split, 1 Define: 1/ operator 17 ALL(a):[a f & ~a=0 => 1/a f] Split, 1 18 ALL(a):[a f => a*(1/a)=1] Split, 1 Applying definition of _ operator... Define: _1 19 1 f => _1 f U Spec, 8 20 _1 f Detach, 19, 14 Order Axioms: 21 Set(pos) & ALL(a):[a pos => a f] & ALL(a):[a f => [a=0 | a pos | _a pos] & ~[a=0 & a pos] & ~[a=0 & _a pos] & ~[a pos & _a pos]] & ALL(a):ALL(b):[a f & b f & a pos & b pos => a+b pos] & ALL(a):ALL(b):[a f & b f & a pos & b pos => a*b pos] & ALL(a):ALL(b):[a f & b f => [a<b <=> b+_a pos]] Premise Splitting out individual axioms... pos is a set (the set of positive elements of f) 22 Set(pos) Split, 21 pos is a subset of f 23 ALL(a):[a pos => a f] Split, 21 Trichotomy Rule 24 ALL(a):[a f => [a=0 | a pos | _a pos] & ~[a=0 & a pos] & ~[a=0 & _a pos] & ~[a pos & _a pos]] Split, 21 Closure under + 25 ALL(a):ALL(b):[a f & b f & a pos & b pos => a+b pos] Split, 21 Closure under * 26 ALL(a):ALL(b):[a f & b f & a pos & b pos => a*b pos] Split, 21 Define: < 27 ALL(a):ALL(b):[a f & b f => [a<b <=> b+_a pos]] Split, 21 Previous Results: Lemma 1: 0<x <=> xpose 28 ALL(a):[a f => [0<a <=> a pos]] Premise Lemma 2: x<0 <=> _xpos 29 ALL(a):[a f => [a<0 <=> _a pos]] Premise Lemma 3: Additivity of < 30 ALL(a):ALL(b):ALL(c):[a f & b f & c f & a<b => a+c<b+c] Premise Lemma 4: Multiplicivity of < 31 ALL(a):ALL(b):ALL(c):[a f & b f & c f & a<b => [0<c => a*c<b*c] & [c<0 => b*c<a*c]] Premise Lemma 5: x*0=0 32 ALL(a):[a f => a*0=0] Premise Lemma 6: _x*_y=x*y 33 ALL(a):ALL(b):[a f & b f => _a*_b=a*b] Premise Prove: 0<1 | 1<0 Applying the Trichotomy Rule... 34 1 f => [1=0 | 1 pos | _1 pos] & ~[1=0 & 1 pos] & ~[1=0 & _1 pos] & ~[1 pos & _1 pos] U Spec, 24 35 [1=0 | 1 pos | _1 pos] & ~[1=0 & 1 pos] & ~[1=0 & _1 pos] & ~[1 pos & _1 pos] Detach, 34, 14 36 1=0 | 1 pos | _1 pos Split, 35 37 ~[1=0 & 1 pos] Split, 35 38 ~[1=0 & _1 pos] Split, 35 39 ~[1 pos & _1 pos] Split, 35 40 ~[~1=0 & ~1 pos] | _1 pos DeMorgan, 36 41 ~[~~[~1=0 & ~1 pos] & ~_1 pos] DeMorgan, 40 42 ~[~1=0 & ~1 pos & ~_1 pos] Rem DNeg, 41 Prove: 0<1 | 1<0 Suppose to the contrary... 43 ~[0<1 | 1<0] Premise 44 ~~[~0<1 & ~1<0] DeMorgan, 43 45 ~0<1 & ~1<0 Rem DNeg, 44 46 ~0<1 Split, 45 47 ~1<0 Split, 45 48 ~1=0 Sym, 15 Applying Lemma 1... 49 1 f => [0<1 <=> 1 pos] U Spec, 28 50 0<1 <=> 1 pos Detach, 49, 14 51 [0<1 => 1 pos] & [1 pos => 0<1] Iff-And, 50 52 0<1 => 1 pos Split, 51 53 1 pos => 0<1 Split, 51 54 ~0<1 => ~1 pos Contra, 53 55 ~1 pos Detach, 54, 46 Applying Lemma 2... 56 1 f => [1<0 <=> _1 pos] U Spec, 29 57 1<0 <=> _1 pos Detach, 56, 14 58 [1<0 => _1 pos] & [_1 pos => 1<0] Iff-And, 57 59 1<0 => _1 pos Split, 58 60 _1 pos => 1<0 Split, 58 61 ~1<0 => ~_1 pos Contra, 60 62 ~_1 pos Detach, 61, 47 63 ~1=0 & ~1 pos Join, 48, 55 64 ~1=0 & ~1 pos & ~_1 pos Join, 63, 62 Obtain the contradiction... 65 ~1=0 & ~1 pos & ~_1 pos & ~[~1=0 & ~1 pos & ~_1 pos] Join, 64, 42 66 ~~[0<1 | 1<0] Conclusion, 43 As Required: 67 0<1 | 1<0 Rem DNeg, 66 Prove: ~1<0 Suppose to the contrary... 68 1<0 Premise 69 ALL(b):ALL(c):[1 f & b f & c f & 1<b => 1+c<b+c] U Spec, 30 70 ALL(c):[1 f & 0 f & c f & 1<0 => 1+c<0+c] U Spec, 69 71 1 f & 0 f & _1 f & 1<0 => 1+_1<0+_1 U Spec, 70 72 1 f & 0 f Join, 14, 6 73 1 f & 0 f & _1 f Join, 72, 20 74 1 f & 0 f & _1 f & 1<0 Join, 73, 68 75 1+_1<0+_1 Detach, 71, 74 Applying definition of _ operator... 76 1 f => 1+_1=0 U Spec, 9 77 1+_1=0 Detach, 76, 14 78 0<0+_1 Substitute, 77, 75 Applying the defintion of 0... 79 _1 f => _1+0=_1 U Spec, 7 80 _1+0=_1 Detach, 79, 20 Applying commutativity of +... 81 ALL(b):[0 f & b f => 0+b=b+0] U Spec, 5 82 0 f & _1 f => 0+_1=_1+0 U Spec, 81 83 0 f & _1 f Join, 6, 20 84 0+_1=_1+0 Detach, 82, 83 85 0+_1=_1 Substitute, 84, 80 86 0<_1 Substitute, 85, 78 Applying the multiplicity of >... 87 ALL(b):ALL(c):[0 f & b f & c f & 0<b => [0<c => 0*c<b*c] & [c<0 => b*c<0*c]] U Spec, 31 88 ALL(c):[0 f & _1 f & c f & 0<_1 => [0<c => 0*c<_1*c] & [c<0 => _1*c<0*c]] U Spec, 87 89 0 f & _1 f & _1 f & 0<_1 => [0<_1 => 0*_1<_1*_1] & [_1<0 => _1*_1<0*_1] U Spec, 88 90 0 f & _1 f Join, 6, 20 91 0 f & _1 f & _1 f Join, 90, 20 92 0 f & _1 f & _1 f & 0<_1 Join, 91, 86 93 [0<_1 => 0*_1<_1*_1] & [_1<0 => _1*_1<0*_1] Detach, 89, 92 94 0<_1 => 0*_1<_1*_1 Split, 93 95 _1<0 => _1*_1<0*_1 Split, 93 96 0*_1<_1*_1 Detach, 94, 86 Applying 0 multiplication... 97 _1 f => _1*0=0 U Spec, 32 98 _1*0=0 Detach, 97, 20 Applying commutativity of *... 99 ALL(b):[_1 f & b f => _1*b=b*_1] U Spec, 12 100 _1 f & 0 f => _1*0=0*_1 U Spec, 99 101 _1 f & 0 f Join, 20, 6 102 _1*0=0*_1 Detach, 100, 101 103 0*_1=0 Substitute, 102, 98 104 0<_1*_1 Substitute, 103, 96 105 ALL(b):[1 f & b f => _1*_b=1*b] U Spec, 33 Applying double negatives multiplied... 106 1 f & 1 f => _1*_1=1*1 U Spec, 105 107 1 f & 1 f Join, 14, 14 108 _1*_1=1*1 Detach, 106, 107 109 0<1*1 Substitute, 108, 104 Applying the definition of 1... 110 1 f => 1*1=1 U Spec, 16 111 1*1=1 Detach, 110, 14 112 0<1 Substitute, 111, 109 Applying Lemma 1... 113 1 f => [0<1 <=> 1 pos] U Spec, 28 114 0<1 <=> 1 pos Detach, 113, 14 115 [0<1 => 1 pos] & [1 pos => 0<1] Iff-And, 114 116 0<1 => 1 pos Split, 115 117 1 pos => 0<1 Split, 115 118 1 pos Detach, 116, 112 119 1 f => [1<0 <=> _1 pos] U Spec, 29 120 1<0 <=> _1 pos Detach, 119, 14 121 [1<0 => _1 pos] & [_1 pos => 1<0] Iff-And, 120 122 1<0 => _1 pos Split, 121 123 _1 pos => 1<0 Split, 121 124 _1 pos Detach, 122, 68 Applying the trichotomy rule... 125 1 f => [1=0 | 1 pos | _1 pos] & ~[1=0 & 1 pos] & ~[1=0 & _1 pos] & ~[1 pos & _1 pos] U Spec, 24 126 [1=0 | 1 pos | _1 pos] & ~[1=0 & 1 pos] & ~[1=0 & _1 pos] & ~[1 pos & _1 pos] Detach, 125, 14 127 1=0 | 1 pos | _1 pos Split, 126 128 ~[1=0 & 1 pos] Split, 126 129 ~[1=0 & _1 pos] Split, 126 130 ~[1 pos & _1 pos] Split, 126 131 1 pos & _1 pos Join, 118, 124 Obtain the contradiction... 132 1 pos & _1 pos & ~[1 pos & _1 pos] Join, 131, 130 By contradiction... 133 ~1<0 Conclusion, 68 134 ~0<1 => 1<0 Imply-Or, 67 135 ~1<0 => ~~0<1 Contra, 134 136 ~1<0 => 0<1 Rem DNeg, 135 As Required: 137 0<1 Detach, 136, 133