Proof of 0<1 in an Ordered Field

Here we prove that 0<1 in any ordered field. This proof makes use of six previously 
established lemmas.

Here we make use of the Trichotomy Rule and the fact that 0 and 1 are distinct to establish
that either 0<1 or 1<0. We then suppose that 1<0 is true and obtain a contradiction. 
Then we are left with 0<1.

Notation:

P & Q  --> P and Q
P | Q  --> P or Q
~P     --> not P
Set(x) --> x is a set


Field Axioms:

1	Set(f)
	& ALL(a):ALL(b):[a  f & b  f => a+b  f]
	& ALL(a):ALL(b):ALL(c):[a  f & b  f & c  f => a+b+c=a+(b+c)]
	& ALL(a):ALL(b):[a  f & b  f => a+b=b+a]
	& 0  f
	& ALL(a):[a  f => a+0=a]
	& ALL(a):[a  f => _a  f]
	& ALL(a):[a  f => a+_a=0]
	& ALL(a):ALL(b):[a  f & b  f => a*b  f]
	& ALL(a):ALL(b):ALL(c):[a  f & b  f & c  f => a*b*c=a*(b*c)]
	& ALL(a):ALL(b):[a  f & b  f => a*b=b*a]
	& ALL(a):ALL(b):ALL(c):[a  f & b  f & c  f => a*(b+c)=a*b+a*c]
	& 1  f
	& ~0=1
	& ALL(a):[a  f => a*1=a]
	& ALL(a):[a  f & ~a=0 => 1/a  f]
	& ALL(a):[a  f => a*(1/a)=1]
	Premise

Splitting out individual axioms...

f is a set

2	Set(f)
	Split, 1

Define: + operator on f

3	ALL(a):ALL(b):[a  f & b  f => a+b  f]
	Split, 1

+ is associative

4	ALL(a):ALL(b):ALL(c):[a  f & b  f & c  f => a+b+c=a+(b+c)]
	Split, 1

+ is commutative

5	ALL(a):ALL(b):[a  f & b  f => a+b=b+a]
	Split, 1

Define: 0

6	0  f
	Split, 1

7	ALL(a):[a  f => a+0=a]
	Split, 1

Define: _ operator on f

8	ALL(a):[a  f => _a  f]
	Split, 1

9	ALL(a):[a  f => a+_a=0]
	Split, 1

Define: * operator on f

10	ALL(a):ALL(b):[a  f & b  f => a*b  f]
	Split, 1

* is associative

11	ALL(a):ALL(b):ALL(c):[a  f & b  f & c  f => a*b*c=a*(b*c)]
	Split, 1

* is commutative

12	ALL(a):ALL(b):[a  f & b  f => a*b=b*a]
	Split, 1

* is distributive over +

13	ALL(a):ALL(b):ALL(c):[a  f & b  f & c  f => a*(b+c)=a*b+a*c]
	Split, 1

Define: 1

14	1  f
	Split, 1

15	~0=1
	Split, 1

16	ALL(a):[a  f => a*1=a]
	Split, 1

Define: 1/ operator

17	ALL(a):[a  f & ~a=0 => 1/a  f]
	Split, 1

18	ALL(a):[a  f => a*(1/a)=1]
	Split, 1

Applying definition of _ operator...

Define: _1

19	1  f => _1  f
	U Spec, 8

20	_1  f
	Detach, 19, 14


Order Axioms:

21	Set(pos)
	& ALL(a):[a  pos => a  f]
	& ALL(a):[a  f
	=> [a=0 | a  pos | _a  pos]
	& ~[a=0 & a  pos]
	& ~[a=0 & _a  pos]
	& ~[a  pos & _a  pos]]
	& ALL(a):ALL(b):[a  f & b  f & a  pos & b  pos => a+b  pos]
	& ALL(a):ALL(b):[a  f & b  f & a  pos & b  pos => a*b  pos]
	& ALL(a):ALL(b):[a  f & b  f => [a<b <=> b+_a  pos]]
	Premise

Splitting out individual axioms...

pos is a set (the set of positive elements of f)

22	Set(pos)
	Split, 21

pos is a subset of f

23	ALL(a):[a  pos => a  f]
	Split, 21

Trichotomy Rule

24	ALL(a):[a  f
	=> [a=0 | a  pos | _a  pos]
	& ~[a=0 & a  pos]
	& ~[a=0 & _a  pos]
	& ~[a  pos & _a  pos]]
	Split, 21

Closure under +

25	ALL(a):ALL(b):[a  f & b  f & a  pos & b  pos => a+b  pos]
	Split, 21

Closure under *

26	ALL(a):ALL(b):[a  f & b  f & a  pos & b  pos => a*b  pos]
	Split, 21

Define: <

27	ALL(a):ALL(b):[a  f & b  f => [a<b <=> b+_a  pos]]
	Split, 21


Previous Results:

Lemma 1: 0<x <=> xpose

28	ALL(a):[a  f => [0<a <=> a  pos]]
	Premise

Lemma 2: x<0 <=> _xpos

29	ALL(a):[a  f => [a<0 <=> _a  pos]]
	Premise

Lemma 3: Additivity of <

30	ALL(a):ALL(b):ALL(c):[a  f & b  f & c  f & a<b => a+c<b+c]
	Premise

Lemma 4: Multiplicivity of <

31	ALL(a):ALL(b):ALL(c):[a  f & b  f & c  f & a<b
	=> [0<c => a*c<b*c] & [c<0 => b*c<a*c]]
	Premise

Lemma 5: x*0=0

32	ALL(a):[a  f => a*0=0]
	Premise

Lemma 6: _x*_y=x*y

33	ALL(a):ALL(b):[a  f & b  f => _a*_b=a*b]
	Premise


Prove: 0<1 | 1<0

Applying the Trichotomy Rule...

34	1  f
	=> [1=0 | 1  pos | _1  pos]
	& ~[1=0 & 1  pos]
	& ~[1=0 & _1  pos]
	& ~[1  pos & _1  pos]
	U Spec, 24

35	[1=0 | 1  pos | _1  pos]
	& ~[1=0 & 1  pos]
	& ~[1=0 & _1  pos]
	& ~[1  pos & _1  pos]
	Detach, 34, 14

36	1=0 | 1  pos | _1  pos
	Split, 35

37	~[1=0 & 1  pos]
	Split, 35

38	~[1=0 & _1  pos]
	Split, 35

39	~[1  pos & _1  pos]
	Split, 35

40	~[~1=0 & ~1  pos] | _1  pos
	DeMorgan, 36

41	~[~~[~1=0 & ~1  pos] & ~_1  pos]
	DeMorgan, 40

42	~[~1=0 & ~1  pos & ~_1  pos]
	Rem DNeg, 41

	
	Prove: 0<1 | 1<0
	
	Suppose to the contrary...

	43	~[0<1 | 1<0]
		Premise

	44	~~[~0<1 & ~1<0]
		DeMorgan, 43

	45	~0<1 & ~1<0
		Rem DNeg, 44

	46	~0<1
		Split, 45

	47	~1<0
		Split, 45

	48	~1=0
		Sym, 15

	Applying Lemma 1...

	49	1  f => [0<1 <=> 1  pos]
		U Spec, 28

	50	0<1 <=> 1  pos
		Detach, 49, 14

	51	[0<1 => 1  pos] & [1  pos => 0<1]
		Iff-And, 50

	52	0<1 => 1  pos
		Split, 51

	53	1  pos => 0<1
		Split, 51

	54	~0<1 => ~1  pos
		Contra, 53

	55	~1  pos
		Detach, 54, 46

	Applying Lemma 2...

	56	1  f => [1<0 <=> _1  pos]
		U Spec, 29

	57	1<0 <=> _1  pos
		Detach, 56, 14

	58	[1<0 => _1  pos] & [_1  pos => 1<0]
		Iff-And, 57

	59	1<0 => _1  pos
		Split, 58

	60	_1  pos => 1<0
		Split, 58

	61	~1<0 => ~_1  pos
		Contra, 60

	62	~_1  pos
		Detach, 61, 47

	63	~1=0 & ~1  pos
		Join, 48, 55

	64	~1=0 & ~1  pos & ~_1  pos
		Join, 63, 62

	Obtain the contradiction...

	65	~1=0 & ~1  pos & ~_1  pos
		& ~[~1=0 & ~1  pos & ~_1  pos]
		Join, 64, 42

66	~~[0<1 | 1<0]
	Conclusion, 43
As Required:

67	0<1 | 1<0
	Rem DNeg, 66

	
	Prove: ~1<0
	
	Suppose to the contrary...

	68	1<0
		Premise

	69	ALL(b):ALL(c):[1  f & b  f & c  f & 1<b => 1+c<b+c]
		U Spec, 30

	70	ALL(c):[1  f & 0  f & c  f & 1<0 => 1+c<0+c]
		U Spec, 69

	71	1  f & 0  f & _1  f & 1<0 => 1+_1<0+_1
		U Spec, 70

	72	1  f & 0  f
		Join, 14, 6

	73	1  f & 0  f & _1  f
		Join, 72, 20

	74	1  f & 0  f & _1  f & 1<0
		Join, 73, 68

	75	1+_1<0+_1
		Detach, 71, 74

	Applying definition of _ operator...

	76	1  f => 1+_1=0
		U Spec, 9

	77	1+_1=0
		Detach, 76, 14

	78	0<0+_1
		Substitute, 77, 75

	Applying the defintion of 0...

	79	_1  f => _1+0=_1
		U Spec, 7

	80	_1+0=_1
		Detach, 79, 20

	Applying commutativity of +...

	81	ALL(b):[0  f & b  f => 0+b=b+0]
		U Spec, 5

	82	0  f & _1  f => 0+_1=_1+0
		U Spec, 81

	83	0  f & _1  f
		Join, 6, 20

	84	0+_1=_1+0
		Detach, 82, 83

	85	0+_1=_1
		Substitute, 84, 80

	86	0<_1
		Substitute, 85, 78

	Applying the multiplicity of >...

	87	ALL(b):ALL(c):[0  f & b  f & c  f & 0<b
		=> [0<c => 0*c<b*c] & [c<0 => b*c<0*c]]
		U Spec, 31

	88	ALL(c):[0  f & _1  f & c  f & 0<_1
		=> [0<c => 0*c<_1*c] & [c<0 => _1*c<0*c]]
		U Spec, 87

	89	0  f & _1  f & _1  f & 0<_1
		=> [0<_1 => 0*_1<_1*_1] & [_1<0 => _1*_1<0*_1]
		U Spec, 88

	90	0  f & _1  f
		Join, 6, 20

	91	0  f & _1  f & _1  f
		Join, 90, 20

	92	0  f & _1  f & _1  f & 0<_1
		Join, 91, 86

	93	[0<_1 => 0*_1<_1*_1] & [_1<0 => _1*_1<0*_1]
		Detach, 89, 92

	94	0<_1 => 0*_1<_1*_1
		Split, 93

	95	_1<0 => _1*_1<0*_1
		Split, 93

	96	0*_1<_1*_1
		Detach, 94, 86

	Applying 0 multiplication...

	97	_1  f => _1*0=0
		U Spec, 32

	98	_1*0=0
		Detach, 97, 20

	Applying commutativity of *...

	99	ALL(b):[_1  f & b  f => _1*b=b*_1]
		U Spec, 12

	100	_1  f & 0  f => _1*0=0*_1
		U Spec, 99

	101	_1  f & 0  f
		Join, 20, 6

	102	_1*0=0*_1
		Detach, 100, 101

	103	0*_1=0
		Substitute, 102, 98

	104	0<_1*_1
		Substitute, 103, 96

	105	ALL(b):[1  f & b  f => _1*_b=1*b]
		U Spec, 33

	Applying double negatives multiplied...

	106	1  f & 1  f => _1*_1=1*1
		U Spec, 105

	107	1  f & 1  f
		Join, 14, 14

	108	_1*_1=1*1
		Detach, 106, 107

	109	0<1*1
		Substitute, 108, 104

	Applying the definition of 1...

	110	1  f => 1*1=1
		U Spec, 16

	111	1*1=1
		Detach, 110, 14

	112	0<1
		Substitute, 111, 109

	Applying Lemma 1...

	113	1  f => [0<1 <=> 1  pos]
		U Spec, 28

	114	0<1 <=> 1  pos
		Detach, 113, 14

	115	[0<1 => 1  pos] & [1  pos => 0<1]
		Iff-And, 114

	116	0<1 => 1  pos
		Split, 115

	117	1  pos => 0<1
		Split, 115

	118	1  pos
		Detach, 116, 112

	119	1  f => [1<0 <=> _1  pos]
		U Spec, 29

	120	1<0 <=> _1  pos
		Detach, 119, 14

	121	[1<0 => _1  pos] & [_1  pos => 1<0]
		Iff-And, 120

	122	1<0 => _1  pos
		Split, 121

	123	_1  pos => 1<0
		Split, 121

	124	_1  pos
		Detach, 122, 68

	Applying the trichotomy rule...

	125	1  f
		=> [1=0 | 1  pos | _1  pos]
		& ~[1=0 & 1  pos]
		& ~[1=0 & _1  pos]
		& ~[1  pos & _1  pos]
		U Spec, 24

	126	[1=0 | 1  pos | _1  pos]
		& ~[1=0 & 1  pos]
		& ~[1=0 & _1  pos]
		& ~[1  pos & _1  pos]
		Detach, 125, 14

	127	1=0 | 1  pos | _1  pos
		Split, 126

	128	~[1=0 & 1  pos]
		Split, 126

	129	~[1=0 & _1  pos]
		Split, 126

	130	~[1  pos & _1  pos]
		Split, 126

	131	1  pos & _1  pos
		Join, 118, 124

	Obtain the contradiction...

	132	1  pos & _1  pos & ~[1  pos & _1  pos]
		Join, 131, 130

By contradiction...

133	~1<0
	Conclusion, 68
134	~0<1 => 1<0
	Imply-Or, 67

135	~1<0 => ~~0<1
	Contra, 134

136	~1<0 => 0<1
	Rem DNeg, 135

As Required:

137	0<1
	Detach, 136, 133