Proof of 0<1 in an Ordered Field
Here we prove that 0<1 in any ordered field. This proof makes use of six previously 
established lemmas.
Here we make use of the Trichotomy Rule and the fact that 0 and 1 are distinct to establish
that either 0<1 or 1<0. We then suppose that 1<0 is true and obtain a contradiction. 
Then we are left with 0<1.
Notation:
P & Q  --> P and Q
P | Q  --> P or Q
~P     --> not P
Set(x) --> x is a set
Field Axioms:
1	Set(f)
	& ALL(a):ALL(b):[a 
 f & b 
 f => a+b 
 f]
	& ALL(a):ALL(b):ALL(c):[a 
 f & b 
 f & c 
 f => a+b+c=a+(b+c)]
	& ALL(a):ALL(b):[a 
 f & b 
 f => a+b=b+a]
	& 0 
 f
	& ALL(a):[a 
 f => a+0=a]
	& ALL(a):[a 
 f => _a 
 f]
	& ALL(a):[a 
 f => a+_a=0]
	& ALL(a):ALL(b):[a 
 f & b 
 f => a*b 
 f]
	& ALL(a):ALL(b):ALL(c):[a 
 f & b 
 f & c 
 f => a*b*c=a*(b*c)]
	& ALL(a):ALL(b):[a 
 f & b 
 f => a*b=b*a]
	& ALL(a):ALL(b):ALL(c):[a 
 f & b 
 f & c 
 f => a*(b+c)=a*b+a*c]
	& 1 
 f
	& ~0=1
	& ALL(a):[a 
 f => a*1=a]
	& ALL(a):[a 
 f & ~a=0 => 1/a 
 f]
	& ALL(a):[a 
 f => a*(1/a)=1]
	Premise
Splitting out individual axioms...
f is a set
2	Set(f)
	Split, 1
Define: + operator on f
3	ALL(a):ALL(b):[a 
 f & b 
 f => a+b 
 f]
	Split, 1
+ is associative
4	ALL(a):ALL(b):ALL(c):[a 
 f & b 
 f & c 
 f => a+b+c=a+(b+c)]
	Split, 1
+ is commutative
5	ALL(a):ALL(b):[a 
 f & b 
 f => a+b=b+a]
	Split, 1
Define: 0
6	0 
 f
	Split, 1
7	ALL(a):[a 
 f => a+0=a]
	Split, 1
Define: _ operator on f
8	ALL(a):[a 
 f => _a 
 f]
	Split, 1
9	ALL(a):[a 
 f => a+_a=0]
	Split, 1
Define: * operator on f
10	ALL(a):ALL(b):[a 
 f & b 
 f => a*b 
 f]
	Split, 1
* is associative
11	ALL(a):ALL(b):ALL(c):[a 
 f & b 
 f & c 
 f => a*b*c=a*(b*c)]
	Split, 1
* is commutative
12	ALL(a):ALL(b):[a 
 f & b 
 f => a*b=b*a]
	Split, 1
* is distributive over +
13	ALL(a):ALL(b):ALL(c):[a 
 f & b 
 f & c 
 f => a*(b+c)=a*b+a*c]
	Split, 1
Define: 1
14	1 
 f
	Split, 1
15	~0=1
	Split, 1
16	ALL(a):[a 
 f => a*1=a]
	Split, 1
Define: 1/ operator
17	ALL(a):[a 
 f & ~a=0 => 1/a 
 f]
	Split, 1
18	ALL(a):[a 
 f => a*(1/a)=1]
	Split, 1
Applying definition of _ operator...
Define: _1
19	1 
 f => _1 
 f
	U Spec, 8
20	_1 
 f
	Detach, 19, 14
Order Axioms:
21	Set(pos)
	& ALL(a):[a 
 pos => a 
 f]
	& ALL(a):[a 
 f
	=> [a=0 | a 
 pos | _a 
 pos]
	& ~[a=0 & a 
 pos]
	& ~[a=0 & _a 
 pos]
	& ~[a 
 pos & _a 
 pos]]
	& ALL(a):ALL(b):[a 
 f & b 
 f & a 
 pos & b 
 pos => a+b 
 pos]
	& ALL(a):ALL(b):[a 
 f & b 
 f & a 
 pos & b 
 pos => a*b 
 pos]
	& ALL(a):ALL(b):[a 
 f & b 
 f => [a<b <=> b+_a 
 pos]]
	Premise
Splitting out individual axioms...
pos is a set (the set of positive elements of f)
22	Set(pos)
	Split, 21
pos is a subset of f
23	ALL(a):[a 
 pos => a 
 f]
	Split, 21
Trichotomy Rule
24	ALL(a):[a 
 f
	=> [a=0 | a 
 pos | _a 
 pos]
	& ~[a=0 & a 
 pos]
	& ~[a=0 & _a 
 pos]
	& ~[a 
 pos & _a 
 pos]]
	Split, 21
Closure under +
25	ALL(a):ALL(b):[a 
 f & b 
 f & a 
 pos & b 
 pos => a+b 
 pos]
	Split, 21
Closure under *
26	ALL(a):ALL(b):[a 
 f & b 
 f & a 
 pos & b 
 pos => a*b 
 pos]
	Split, 21
Define: <
27	ALL(a):ALL(b):[a 
 f & b 
 f => [a<b <=> b+_a 
 pos]]
	Split, 21
Previous Results:
Lemma 1: 0<x <=> x
pose
28	ALL(a):[a 
 f => [0<a <=> a 
 pos]]
	Premise
Lemma 2: x<0 <=> _x
pos
29	ALL(a):[a 
 f => [a<0 <=> _a 
 pos]]
	Premise
Lemma 3: Additivity of <
30	ALL(a):ALL(b):ALL(c):[a 
 f & b 
 f & c 
 f & a<b => a+c<b+c]
	Premise
Lemma 4: Multiplicivity of <
31	ALL(a):ALL(b):ALL(c):[a 
 f & b 
 f & c 
 f & a<b
	=> [0<c => a*c<b*c] & [c<0 => b*c<a*c]]
	Premise
Lemma 5: x*0=0
32	ALL(a):[a 
 f => a*0=0]
	Premise
Lemma 6: _x*_y=x*y
33	ALL(a):ALL(b):[a 
 f & b 
 f => _a*_b=a*b]
	Premise
Prove: 0<1 | 1<0
Applying the Trichotomy Rule...
34	1 
 f
	=> [1=0 | 1 
 pos | _1 
 pos]
	& ~[1=0 & 1 
 pos]
	& ~[1=0 & _1 
 pos]
	& ~[1 
 pos & _1 
 pos]
	U Spec, 24
35	[1=0 | 1 
 pos | _1 
 pos]
	& ~[1=0 & 1 
 pos]
	& ~[1=0 & _1 
 pos]
	& ~[1 
 pos & _1 
 pos]
	Detach, 34, 14
36	1=0 | 1 
 pos | _1 
 pos
	Split, 35
37	~[1=0 & 1 
 pos]
	Split, 35
38	~[1=0 & _1 
 pos]
	Split, 35
39	~[1 
 pos & _1 
 pos]
	Split, 35
40	~[~1=0 & ~1 
 pos] | _1 
 pos
	DeMorgan, 36
41	~[~~[~1=0 & ~1 
 pos] & ~_1 
 pos]
	DeMorgan, 40
42	~[~1=0 & ~1 
 pos & ~_1 
 pos]
	Rem DNeg, 41
	
	Prove: 0<1 | 1<0
	
	Suppose to the contrary...
	43	~[0<1 | 1<0]
		Premise
	44	~~[~0<1 & ~1<0]
		DeMorgan, 43
	45	~0<1 & ~1<0
		Rem DNeg, 44
	46	~0<1
		Split, 45
	47	~1<0
		Split, 45
	48	~1=0
		Sym, 15
	Applying Lemma 1...
	49	1 
 f => [0<1 <=> 1 
 pos]
		U Spec, 28
	50	0<1 <=> 1 
 pos
		Detach, 49, 14
	51	[0<1 => 1 
 pos] & [1 
 pos => 0<1]
		Iff-And, 50
	52	0<1 => 1 
 pos
		Split, 51
	53	1 
 pos => 0<1
		Split, 51
	54	~0<1 => ~1 
 pos
		Contra, 53
	55	~1 
 pos
		Detach, 54, 46
	Applying Lemma 2...
	56	1 
 f => [1<0 <=> _1 
 pos]
		U Spec, 29
	57	1<0 <=> _1 
 pos
		Detach, 56, 14
	58	[1<0 => _1 
 pos] & [_1 
 pos => 1<0]
		Iff-And, 57
	59	1<0 => _1 
 pos
		Split, 58
	60	_1 
 pos => 1<0
		Split, 58
	61	~1<0 => ~_1 
 pos
		Contra, 60
	62	~_1 
 pos
		Detach, 61, 47
	63	~1=0 & ~1 
 pos
		Join, 48, 55
	64	~1=0 & ~1 
 pos & ~_1 
 pos
		Join, 63, 62
	Obtain the contradiction...
	65	~1=0 & ~1 
 pos & ~_1 
 pos
		& ~[~1=0 & ~1 
 pos & ~_1 
 pos]
		Join, 64, 42
66	~~[0<1 | 1<0]
	Conclusion, 43
As Required:
67	0<1 | 1<0
	Rem DNeg, 66
	
	Prove: ~1<0
	
	Suppose to the contrary...
	68	1<0
		Premise
	69	ALL(b):ALL(c):[1 
 f & b 
 f & c 
 f & 1<b => 1+c<b+c]
		U Spec, 30
	70	ALL(c):[1 
 f & 0 
 f & c 
 f & 1<0 => 1+c<0+c]
		U Spec, 69
	71	1 
 f & 0 
 f & _1 
 f & 1<0 => 1+_1<0+_1
		U Spec, 70
	72	1 
 f & 0 
 f
		Join, 14, 6
	73	1 
 f & 0 
 f & _1 
 f
		Join, 72, 20
	74	1 
 f & 0 
 f & _1 
 f & 1<0
		Join, 73, 68
	75	1+_1<0+_1
		Detach, 71, 74
	Applying definition of _ operator...
	76	1 
 f => 1+_1=0
		U Spec, 9
	77	1+_1=0
		Detach, 76, 14
	78	0<0+_1
		Substitute, 77, 75
	Applying the defintion of 0...
	79	_1 
 f => _1+0=_1
		U Spec, 7
	80	_1+0=_1
		Detach, 79, 20
	Applying commutativity of +...
	81	ALL(b):[0 
 f & b 
 f => 0+b=b+0]
		U Spec, 5
	82	0 
 f & _1 
 f => 0+_1=_1+0
		U Spec, 81
	83	0 
 f & _1 
 f
		Join, 6, 20
	84	0+_1=_1+0
		Detach, 82, 83
	85	0+_1=_1
		Substitute, 84, 80
	86	0<_1
		Substitute, 85, 78
	Applying the multiplicity of >...
	87	ALL(b):ALL(c):[0 
 f & b 
 f & c 
 f & 0<b
		=> [0<c => 0*c<b*c] & [c<0 => b*c<0*c]]
		U Spec, 31
	88	ALL(c):[0 
 f & _1 
 f & c 
 f & 0<_1
		=> [0<c => 0*c<_1*c] & [c<0 => _1*c<0*c]]
		U Spec, 87
	89	0 
 f & _1 
 f & _1 
 f & 0<_1
		=> [0<_1 => 0*_1<_1*_1] & [_1<0 => _1*_1<0*_1]
		U Spec, 88
	90	0 
 f & _1 
 f
		Join, 6, 20
	91	0 
 f & _1 
 f & _1 
 f
		Join, 90, 20
	92	0 
 f & _1 
 f & _1 
 f & 0<_1
		Join, 91, 86
	93	[0<_1 => 0*_1<_1*_1] & [_1<0 => _1*_1<0*_1]
		Detach, 89, 92
	94	0<_1 => 0*_1<_1*_1
		Split, 93
	95	_1<0 => _1*_1<0*_1
		Split, 93
	96	0*_1<_1*_1
		Detach, 94, 86
	Applying 0 multiplication...
	97	_1 
 f => _1*0=0
		U Spec, 32
	98	_1*0=0
		Detach, 97, 20
	Applying commutativity of *...
	99	ALL(b):[_1 
 f & b 
 f => _1*b=b*_1]
		U Spec, 12
	100	_1 
 f & 0 
 f => _1*0=0*_1
		U Spec, 99
	101	_1 
 f & 0 
 f
		Join, 20, 6
	102	_1*0=0*_1
		Detach, 100, 101
	103	0*_1=0
		Substitute, 102, 98
	104	0<_1*_1
		Substitute, 103, 96
	105	ALL(b):[1 
 f & b 
 f => _1*_b=1*b]
		U Spec, 33
	Applying double negatives multiplied...
	106	1 
 f & 1 
 f => _1*_1=1*1
		U Spec, 105
	107	1 
 f & 1 
 f
		Join, 14, 14
	108	_1*_1=1*1
		Detach, 106, 107
	109	0<1*1
		Substitute, 108, 104
	Applying the definition of 1...
	110	1 
 f => 1*1=1
		U Spec, 16
	111	1*1=1
		Detach, 110, 14
	112	0<1
		Substitute, 111, 109
	Applying Lemma 1...
	113	1 
 f => [0<1 <=> 1 
 pos]
		U Spec, 28
	114	0<1 <=> 1 
 pos
		Detach, 113, 14
	115	[0<1 => 1 
 pos] & [1 
 pos => 0<1]
		Iff-And, 114
	116	0<1 => 1 
 pos
		Split, 115
	117	1 
 pos => 0<1
		Split, 115
	118	1 
 pos
		Detach, 116, 112
	119	1 
 f => [1<0 <=> _1 
 pos]
		U Spec, 29
	120	1<0 <=> _1 
 pos
		Detach, 119, 14
	121	[1<0 => _1 
 pos] & [_1 
 pos => 1<0]
		Iff-And, 120
	122	1<0 => _1 
 pos
		Split, 121
	123	_1 
 pos => 1<0
		Split, 121
	124	_1 
 pos
		Detach, 122, 68
	Applying the trichotomy rule...
	125	1 
 f
		=> [1=0 | 1 
 pos | _1 
 pos]
		& ~[1=0 & 1 
 pos]
		& ~[1=0 & _1 
 pos]
		& ~[1 
 pos & _1 
 pos]
		U Spec, 24
	126	[1=0 | 1 
 pos | _1 
 pos]
		& ~[1=0 & 1 
 pos]
		& ~[1=0 & _1 
 pos]
		& ~[1 
 pos & _1 
 pos]
		Detach, 125, 14
	127	1=0 | 1 
 pos | _1 
 pos
		Split, 126
	128	~[1=0 & 1 
 pos]
		Split, 126
	129	~[1=0 & _1 
 pos]
		Split, 126
	130	~[1 
 pos & _1 
 pos]
		Split, 126
	131	1 
 pos & _1 
 pos
		Join, 118, 124
	Obtain the contradiction...
	132	1 
 pos & _1 
 pos & ~[1 
 pos & _1 
 pos]
		Join, 131, 130
By contradiction...
133	~1<0
	Conclusion, 68
134	~0<1 => 1<0
	Imply-Or, 67
135	~1<0 => ~~0<1
	Contra, 134
136	~1<0 => 0<1
	Rem DNeg, 135
As Required:
137	0<1
	Detach, 136, 133