Definition: 2=1+1 Here we define the number 2 starting from the axioms for the natural numbers. We make use of a modified form of Peano's axioms without any explicit successor function. We start with the addition operator as a given. Informally, we say that x+1 is the successor of x. And that x is the predecessor of x+1. Note: Statements are in black, comments in blue, rules used and line references in gray. The axioms for the natural numbers: 1 Set(n) & 1 ε n & ALL(a):ALL(b):[a ε n & b ε n => a+b ε n] & ALL(a):[a ε n => ~a+1=1] & ALL(a):ALL(b):[a ε n & b ε n & a+1=b+1 => a=b] & ALL(a):ALL(b):[a ε n & b ε n => a+(b+1)=a+b+1] & ALL(a):[Set(a) & 1 ε a & ALL(b):[b ε n & b ε a => b+1 ε a] => ALL(b):[b ε n => b ε a]] Premise Splitting the above premise into 7 separate axioms... A1: n is a set (the set of natural numbers). 2 Set(n) Split, 1 A2: 1 is a natural number 3 1 ε n Split, 1 A3: + is a binary function on n 4 ALL(a):ALL(b):[a ε n & b ε n => a+b ε n] Split, 1 A4: The number 1 has no predecessor. It is the "first" natural number. 5 ALL(a):[a ε n => ~a+1=1] Split, 1 A5: Adding 1 is right-cancelable 6 ALL(a):ALL(b):[a ε n & b ε n & a+1=b+1 => a=b] Split, 1 A6: Adding 1 is associative 7 ALL(a):ALL(b):[a ε n & b ε n => a+(b+1)=a+b+1] Split, 1 A7: The principle of mathematical induction 8 ALL(a):[Set(a) & 1 ε a & ALL(b):[b ε n & b ε a => b+1 ε a] => ALL(b):[b ε n => b ε a]] Split, 1 Apply A3 for a=1 and b=1 9 ALL(b):[1 ε n & b ε n => 1+b ε n] U Spec, 4 10 1 ε n & 1 ε n => 1+1 ε n U Spec, 9 Apply A2 11 1 ε n & 1 ε n Join, 3, 3 From A2 and A3... 12 1+1 ε n Detach, 10, 11 Apply the Reflex Axiom of Equality for 1+1 13 1+1=1+1 Reflex 14 1+1 ε n & 1+1=1+1 Join, 12, 13 Apply Existential Generalization 15 EXIST(c):[c ε n & c=1+1] E Gen, 14 Define: 2 Apply Existential Specification 16 2 ε n & 2=1+1 E Spec, 15