THEOREM

*******

 

1+1=2

 

 

This machine-verified formal proof was written with the aid of the author's DC Proof 2.0 software available at http://www.dcproof.com

                 

 

AXIOMS REQUIRED

***************

 

1     0 e n

      Axiom

 

2     ALL(a):[a e n => EXIST(b):[b e n & next(a)=b]]

      Axiom

 

3     ALL(a):[a e n => a+0=a]

      Axiom

 

4     ALL(a):ALL(b):[a e n & b e n => a+next(b)=next(a+b)]

      Axiom

 

 

PROOF

*****

 

Apply Axiom 2 for a=0

 

5     0 e n => EXIST(b):[b e n & next(0)=b]

      U Spec, 2

 

6     EXIST(b):[b e n & next(0)=b]

      Detach, 5, 1

 

7     1 e n & next(0)=1

      E Spec, 6

 

Define: 1

 

8     1 e n

      Split, 7

 

9     next(0)=1

      Split, 7

 

Apply Axiom 2 for a=1

 

10   1 e n => EXIST(b):[b e n & next(1)=b]

      U Spec, 2

 

11   EXIST(b):[b e n & next(1)=b]

      Detach, 10, 8

 

12   2 e n & next(1)=2

      E Spec, 11

 

Define: 2

 

13   2 e n

      Split, 12

 

14   next(1)=2

      Split, 12

 

Apply Axiom 3 for a=1

 

15   1 e n => 1+0=1

      U Spec, 3

 

16   1+0=1

      Detach, 15, 8

 

Apply Axiom 4 for a=1 and b=0

 

17   ALL(b):[1 e n & b e n => 1+next(b)=next(1+b)]

      U Spec, 4

 

18   1 e n & 0 e n => 1+next(0)=next(1+0)

      U Spec, 17

 

19   1 e n & 0 e n

      Join, 8, 1

 

20   1+next(0)=next(1+0)

      Detach, 18, 19

 

Substituting...

 

21   1+1=next(1+0)

      Substitute, 9, 20

 

22   1+1=next(1)

      Substitute, 16, 21

 

 

As Required:

 

23   1+1=2

      Substitute, 14, 22