THEOREM
*******
1+1=2
This machine-verified formal
proof was written with the aid of the author's DC Proof 2.0 software available
at http://www.dcproof.com
AXIOMS REQUIRED
***************
1 0 e n
Axiom
2 ALL(a):[a e n =>
EXIST(b):[b e n & next(a)=b]]
Axiom
3 ALL(a):[a e n => a+0=a]
Axiom
4 ALL(a):ALL(b):[a e n & b e n => a+next(b)=next(a+b)]
Axiom
PROOF
*****
Apply Axiom 2 for a=0
5 0 e n => EXIST(b):[b e n & next(0)=b]
U Spec, 2
6 EXIST(b):[b e n & next(0)=b]
Detach, 5, 1
7 1 e n & next(0)=1
E Spec, 6
Define: 1
8 1 e n
Split, 7
9 next(0)=1
Split, 7
Apply Axiom 2 for a=1
10 1 e n => EXIST(b):[b e n & next(1)=b]
U Spec, 2
11 EXIST(b):[b e n & next(1)=b]
Detach, 10, 8
12 2 e n & next(1)=2
E Spec, 11
Define: 2
13 2 e n
Split, 12
14 next(1)=2
Split, 12
Apply Axiom 3 for a=1
15 1 e n => 1+0=1
U Spec, 3
16 1+0=1
Detach, 15, 8
Apply Axiom 4 for a=1 and b=0
17 ALL(b):[1 e n & b e n => 1+next(b)=next(1+b)]
U Spec, 4
18 1 e n & 0 e n => 1+next(0)=next(1+0)
U Spec, 17
19 1 e n & 0 e n
Join, 8, 1
20 1+next(0)=next(1+0)
Detach, 18, 19
Substituting...
21 1+1=next(1+0)
Substitute, 9, 20
22 1+1=next(1)
Substitute, 16,
21
As Required:
23 1+1=2
Substitute, 14,
22