THEOREM

*******

 

Suppose s is a non-empty subset of the reals that is bounded from above, and that lub is the least upper bound of s. Then we have:

 

  ALL(a):[a e r => [a<lub => EXIST(b):[b e s & [a<b & b<=lub]]]]]]

 

where r is the set of real numbers.

 

 

OUTLINE

*******

 

Line No.  Description

 

1-4       Properties of < and <= on r

5         Suppose s is a non-empty subset of r that is bounded from above

9         Suppose lub is the least upper bound of s

13        Suppose x e r

14        Suppose x < lub

17-22     Case 1: Prove lub e s  => EXIST(b):[b e s & [x<b & b<=lub]]

23-65     Case 2: Prove ~lub e s => EXIST(b):[b e s & [x<b & b<=lub]]

 

This formal proof was written and machine-verified with the aid the author's DC Proof 2.0 software available at http://www.dcproof.com

 

 

PROPERTIES OF < AND <= ON R

***************************

 

1     ALL(a):[a e r => a<=a]

      Axiom

 

2     ALL(a):ALL(b):[a e r & b e r => [~a<b => b<=a]]

      Axiom

 

3     ALL(a):ALL(b):[a e r & b e r => [~a<=b => b<a]]

      Axiom

 

4     ALL(a):ALL(b):[a e r & b e r => [a<=b => ~b<a]]

      Axiom

 

    

     PROOF

     *****

    

     Suppose s is a non-empty subset of the reals that is bounded from above

 

      5     ALL(a):[a e s => a e r]

          & EXIST(a):a e s

          & EXIST(a):[a e r & ALL(b):[b e s => b<=a]]

            Premise

 

     Splitting this premise...

    

     s is a subset of r

 

      6     ALL(a):[a e s => a e r]

            Split, 5

 

     s is non-empty

 

      7     EXIST(a):a e s

            Split, 5

 

     s is bounded from above

 

      8     EXIST(a):[a e r & ALL(b):[b e s => b<=a]]

            Split, 5

 

         

          Suppose lub is the least upper bound of s

 

            9     lub e r

              & ALL(a):[a e s => a<=lub]

              & ALL(a):[a e r & ALL(b):[b e s => b<=a] => lub<=a]

                  Premise

 

          Splitting this premise...

 

            10    lub e r

                  Split, 9

 

            11    ALL(a):[a e s => a<=lub]

                  Split, 9

 

            12    ALL(a):[a e r & ALL(b):[b e s => b<=a] => lub<=a]

                  Split, 9

 

             

              Prove: ALL(a):[a e r => [a<lub => EXIST(b):[b e s & [a<b & b<=lub]]]]

             

              Suppose...

 

                  13    x e r

                        Premise

 

                  

                   Prove: x<lub => EXIST(b):[b e s & [x<b & b<=lub]]

                  

                   Suppose...

 

                        14    x<lub

                              Premise

 

                   Two cases to consider:

 

                        15    lub e s | ~lub e s

                              Or Not

 

                       

                        Case 1

                       

                        Prove: lub e s => EXIST(b):[b e s & [x<b & b<=lub]]

                       

                        Suppose...

 

                              16    lub e s

                                    Premise

 

                        Apply property of <= on r

 

                              17    lub e r => lub<=lub

                                    U Spec, 1

 

                              18    lub<=lub

                                    Detach, 17, 10

 

                              19    x<lub & lub<=lub

                                    Join, 14, 18

 

                              20    lub e s & [x<lub & lub<=lub]

                                    Join, 16, 19

 

                              21    EXIST(b):[b e s & [x<b & b<=lub]]

                                    E Gen, 20

 

                  

                   Case 1

                  

                   As Required:

 

                        22    lub e s => EXIST(b):[b e s & [x<b & b<=lub]]

                              4 Conclusion, 16

 

                       

                        Case 2

                       

                        Prove: ~lub e s => EXIST(b):[b e s & [x<b & b<=lub]]

                       

                        Suppose...

 

                              23    ~lub e s

                                    Premise

 

                            

                             Prove: EXIST(b):[b e s & [x<b & b<=lub]]

                            

                             Suppose to the contrary...

 

                                    24    ~EXIST(b):[b e s & [x<b & b<=lub]]

                                          Premise

 

                                    25    ~~ALL(b):~[b e s & [x<b & b<=lub]]

                                          Quant, 24

 

                                    26    ALL(b):~[b e s & [x<b & b<=lub]]

                                          Rem DNeg, 25

 

                                    27    ALL(b):~~[b e s => ~[x<b & b<=lub]]

                                          Imply-And, 26

 

                                    28    ALL(b):[b e s => ~[x<b & b<=lub]]

                                          Rem DNeg, 27

 

                                    29    ALL(b):[b e s => ~~[~x<b | ~b<=lub]]

                                          DeMorgan, 28

 

                                    30    ALL(b):[b e s => ~x<b | ~b<=lub]

                                          Rem DNeg, 29

 

                                 

                                  Prove: ALL(a):[a e s => a<=x]  i.e. x is an upper bound

                                         of s  (to obtain a contradiction)

                                 

                                  Suppose...

 

                                          31    y e s

                                                Premise

 

                                  Apply premise...

 

                                          32    y e s => ~x<y | ~y<=lub

                                                U Spec, 30

 

                                  Two sub-cases to consider:

 

                                          33    ~x<y | ~y<=lub

                                                Detach, 32, 31

 

                                 

                                  Sub-case 1

                                 

                                  Prove: ~x<y => y<=x

                                 

                                  Apply property of < and <=

 

                                          34    ALL(b):[x e r & b e r => [~x<b => b<=x]]

                                                U Spec, 2

 

                                          35    x e r & y e r => [~x<y => y<=x]

                                                U Spec, 34

 

                                          36    y e s => y e r

                                                U Spec, 6

 

                                          37    y e r

                                                Detach, 36, 31

 

                                          38    x e r & y e r

                                                Join, 13, 37

 

                                  Sub-case 1

                                 

                                  As Required:

 

                                          39    ~x<y => y<=x

                                                Detach, 35, 38

 

                                     

                                      Sub-case 2

                                     

                                      Prove: ~y<=lub => y<=x

                                     

                                      Suppose...

 

                                                40    ~y<=lub

                                                      Premise

 

                                      Apply property of < and <= on r

 

                                                41    ALL(b):[y e r & b e r => [~y<=b => b<y]]

                                                      U Spec, 3

 

                                                42    y e r & lub e r => [~y<=lub => lub<y]

                                                      U Spec, 41

 

                                                43    y e r & lub e r

                                                      Join, 37, 10

 

                                                44    ~y<=lub => lub<y

                                                      Detach, 42, 43

 

                                                45    lub<y

                                                      Detach, 44, 40

 

                                      Apply definition of lub

 

                                                46    y e s => y<=lub

                                                      U Spec, 11

 

                                                47    y<=lub

                                                      Detach, 46, 31

 

                                      Apply Arbitrary Consequent Rule

 

                                                48    ~y<=lub => y<=x

                                                      Arb Cons, 47

 

                                                49    y<=x

                                                      Detach, 48, 40

 

                                  Sub-case 2

                                 

                                  As Required:

 

                                          50    ~y<=lub => y<=x

                                                4 Conclusion, 40

 

                                  Joining results...

 

                                          51    [~x<y => y<=x] & [~y<=lub => y<=x]

                                                Join, 39, 50

 

                                          52    y<=x

                                                Cases, 33, 51

 

                             x is an upper bound of s  (to obtain a contradiction)

                            

                             As Required:

 

                                    53    ALL(a):[a e s => a<=x]

                                          4 Conclusion, 31

 

                             Apply defintion of lub to obtain a contradiction

 

                                    54    x e r & ALL(b):[b e s => b<=x] => lub<=x

                                          U Spec, 12

 

                                    55    x e r & ALL(a):[a e s => a<=x]

                                          Join, 13, 53

 

                                    56    lub<=x

                                          Detach, 54, 55

 

                             Apply property of < and <= on r

 

                                    57    ALL(b):[lub e r & b e r => [lub<=b => ~b<lub]]

                                          U Spec, 4

 

                                    58    lub e r & x e r => [lub<=x => ~x<lub]

                                          U Spec, 57

 

                                    59    lub e r & x e r

                                          Join, 10, 13

 

                                    60    lub<=x => ~x<lub

                                          Detach, 58, 59

 

                                    61    ~x<lub

                                          Detach, 60, 56

 

                             Obtain the contradiction...

 

                                    62    x<lub & ~x<lub

                                          Join, 14, 61

 

                        As Required:

 

                              63    ~~EXIST(b):[b e s & [x<b & b<=lub]]

                                    4 Conclusion, 24

 

                        As Required:

 

                              64    EXIST(b):[b e s & [x<b & b<=lub]]

                                    Rem DNeg, 63

 

                   Case 2

                  

                   As Required:

 

                        65    ~lub e s => EXIST(b):[b e s & [x<b & b<=lub]]

                              4 Conclusion, 23

 

                   Joining results...

 

                        66    [lub e s => EXIST(b):[b e s & [x<b & b<=lub]]]

                        & [~lub e s => EXIST(b):[b e s & [x<b & b<=lub]]]

                              Join, 22, 65

 

                        67    EXIST(b):[b e s & [x<b & b<=lub]]

                              Cases, 15, 66

 

              As Required:

 

                  68    x<lub => EXIST(b):[b e s & [x<b & b<=lub]]

                        4 Conclusion, 14

 

          As Required:

 

            69    ALL(a):[a e r => [a<lub => EXIST(b):[b e s & [a<b & b<=lub]]]]

                  4 Conclusion, 13

 

     As Required:

 

      70    ALL(lub):[lub e r

          & ALL(a):[a e s => a<=lub]

          & ALL(a):[a e r & ALL(b):[b e s => b<=a] => lub<=a]

          => ALL(a):[a e r => [a<lub => EXIST(b):[b e s & [a<b & b<=lub]]]]]

            4 Conclusion, 9

 

 

As Required:

 

71    ALL(s):[ALL(a):[a e s => a e r]

     & EXIST(a):a e s

     & EXIST(a):[a e r & ALL(b):[b e s => b<=a]]

     => ALL(lub):[lub e r

     & ALL(a):[a e s => a<=lub]

     & ALL(a):[a e r & ALL(b):[b e s => b<=a] => lub<=a]

     => ALL(a):[a e r => [a<lub => EXIST(b):[b e s & [a<b & b<=lub]]]]]]

      4 Conclusion, 5