THEOREM

*******

 

As a consequence of the proposed Axiom of Infinity, there exists a set n that satifies

the Peano Axioms

 

EXIST(n):EXIST(next):EXIST(n0):[Set(n)

 

& n0 e n                                                      PA1

 

& ALL(a):[a e n => next(a) e n]                               PA2

 

& ALL(b):ALL(c):[b e n & c e n => [next(b)=next(c) => b=c]]   PA3

 

& ALL(b):[b e n => ~next(b)=n0]                               PA4

 

& ALL(b):[Set(b)                                              PA5

  & ALL(c):[c e b => c e n]

  & n0 e b

  & ALL(c):[c e b => next(c) e b]

  => ALL(c):[c e n => c e b]]]

 

 

By Dan Christensen

2014-02-02

 

This proof was written with the aid of the author's DC Proof 2.0 software available free

at http://www.dcproof.com

 

 

Proposed Axiom of Infinity

**************************

 

There exists a set on which an injective, but not surjective function is defined.

 

1     EXIST(a):EXIST(f):[Set(a)

     & ALL(b):[b e a => f(b) e a]

     & ALL(b):ALL(c):[b e a & c e a => [f(b)=f(c) => b=c]]

     & EXIST(b):[b e a & ALL(c):[c e a => ~f(c)=b]]]

      Axiom

 

Apply Axiom of Infinity

 

2     EXIST(f):[Set(s)

     & ALL(b):[b e s => f(b) e s]

     & ALL(b):ALL(c):[b e s & c e s => [f(b)=f(c) => b=c]]

     & EXIST(b):[b e s & ALL(c):[c e s => ~f(c)=b]]]

      E Spec, 1

 

3     Set(s)

     & ALL(b):[b e s => f(b) e s]

     & ALL(b):ALL(c):[b e s & c e s => [f(b)=f(c) => b=c]]

     & EXIST(b):[b e s & ALL(c):[c e s => ~f(c)=b]]

      E Spec, 2

 

Define: s, f

************

 

s is a set

 

4     Set(s)

      Split, 3

 

f is a function mapping s to itself

 

5     ALL(b):[b e s => f(b) e s]

      Split, 3

 

f is injective (1-to-1)

 

6     ALL(b):ALL(c):[b e s & c e s => [f(b)=f(c) => b=c]]

      Split, 3

 

f is not surjective (not onto)

 

7     EXIST(b):[b e s & ALL(c):[c e s => ~f(c)=b]]

      Split, 3

 

8     s0 e s & ALL(c):[c e s => ~f(c)=s0]

      E Spec, 7

 

Define: s0, an element of s with no pre-image under f

 

9     s0 e s

      Split, 8

 

10    ALL(c):[c e s => ~f(c)=s0]

      Split, 8

 

Apply Subset Axiom

 

11    EXIST(sub):[Set(sub) & ALL(a):[a e sub <=> a e s & ALL(b):[Set(b)

     & s0 e b

     & ALL(c):[c e b & c e s => f(c) e b]

     => a e b]]]

      Subset, 4

 

12    Set(n) & ALL(a):[a e n <=> a e s & ALL(b):[Set(b)

     & s0 e b

     & ALL(c):[c e b & c e s => f(c) e b]

     => a e b]]

      E Spec, 11

 

Define: n  

*********

 

A subset of s

 

13    Set(n)

      Split, 12

 

14    ALL(a):[a e n <=> a e s & ALL(b):[Set(b)

     & s0 e b

     & ALL(c):[c e b & c e s => f(c) e b]

     => a e b]]

      Split, 12

 

Prove: s0 e n

 

Apply definition of n

 

15    s0 e n <=> s0 e s & ALL(b):[Set(b)

     & s0 e b

     & ALL(c):[c e b & c e s => f(c) e b]

     => s0 e b]

      U Spec, 14

 

16    [s0 e n => s0 e s & ALL(b):[Set(b)

     & s0 e b

     & ALL(c):[c e b & c e s => f(c) e b]

     => s0 e b]]

     & [s0 e s & ALL(b):[Set(b)

     & s0 e b

     & ALL(c):[c e b & c e s => f(c) e b]

     => s0 e b] => s0 e n]

      Iff-And, 15

 

17    s0 e n => s0 e s & ALL(b):[Set(b)

     & s0 e b

     & ALL(c):[c e b & c e s => f(c) e b]

     => s0 e b]

      Split, 16

 

Sufficient: s0 e n

 

18    s0 e s & ALL(b):[Set(b)

     & s0 e b

     & ALL(c):[c e b & c e s => f(c) e b]

     => s0 e b] => s0 e n

      Split, 16

 

    

     Prove: ALL(b):[Set(b)

            & s0 e b

            & ALL(c):[c e b & c e s => f(c) e b]

            => s0 e b]

    

     Suppose...

 

      19    Set(x)

          & s0 e x

          & ALL(c):[c e x & c e s => f(c) e x]

            Premise

 

      20    Set(x)

            Split, 19

 

      21    s0 e x

            Split, 19

 

As Required:

 

22    ALL(b):[Set(b)

     & s0 e b

     & ALL(c):[c e b & c e s => f(c) e b]

     => s0 e b]

      4 Conclusion, 19

 

23    s0 e s

     & ALL(b):[Set(b)

     & s0 e b

     & ALL(c):[c e b & c e s => f(c) e b]

     => s0 e b]

      Join, 9, 22

 

PA1

***

 

24    s0 e n

      Detach, 18, 23

 

    

     Prove: ALL(b):[b e n => f(b) e n]

    

     Suppose...

 

      25    x e n

            Premise

 

     Apply definition n

 

      26    x e n <=> x e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => x e b]

            U Spec, 14

 

      27    [x e n => x e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => x e b]]

          & [x e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => x e b] => x e n]

            Iff-And, 26

 

      28    x e n => x e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => x e b]

            Split, 27

 

      29    x e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => x e b] => x e n

            Split, 27

 

      30    x e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => x e b]

            Detach, 28, 25

 

      31    x e s

            Split, 30

 

      32    ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => x e b]

            Split, 30

 

     Apply definition of n

 

      33    f(x) e n <=> f(x) e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => f(x) e b]

            U Spec, 14

 

      34    [f(x) e n => f(x) e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => f(x) e b]]

          & [f(x) e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => f(x) e b] => f(x) e n]

            Iff-And, 33

 

      35    f(x) e n => f(x) e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => f(x) e b]

            Split, 34

 

     Sufficient: For f(x) e n

 

      36    f(x) e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => f(x) e b] => f(x) e n

            Split, 34

 

     Apply definition of s, f

 

      37    x e s => f(x) e s

            U Spec, 5

 

      38    f(x) e s

            Detach, 37, 31

 

         

          Prove: ALL(b):[Set(b)

                 & s0 e b

                 & ALL(c):[c e b & c e s => f(c) e b]

                 => f(x) e b]

         

          Suppose...

 

            39    Set(p)

              & s0 e p

              & ALL(c):[c e p & c e s => f(c) e p]

                  Premise

 

            40    Set(p)

                  Split, 39

 

            41    s0 e p

                  Split, 39

 

            42    ALL(c):[c e p & c e s => f(c) e p]

                  Split, 39

 

          From definition of n...

 

            43    Set(p)

              & s0 e p

              & ALL(c):[c e p & c e s => f(c) e p]

              => x e p

                  U Spec, 32

 

            44    x e p

                  Detach, 43, 39

 

            45    x e p & x e s => f(x) e p

                  U Spec, 42

 

            46    x e p & x e s

                  Join, 44, 31

 

            47    f(x) e p

                  Detach, 45, 46

 

     As Required:

 

      48    ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => f(x) e b]

            4 Conclusion, 39

 

      49    f(x) e s

          & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => f(x) e b]

            Join, 38, 48

 

      50    f(x) e n

            Detach, 36, 49

 

PA2

***

 

51    ALL(a):[a e n => f(a) e n]

      4 Conclusion, 25

 

    

     Prove: ALL(b):ALL(c):[b e n & c e n => [f(b)=f(c) => b=c]]

    

     Suppose...

 

      52    x e n & y e n

            Premise

 

      53    x e n

            Split, 52

 

      54    y e n

            Split, 52

 

     From definition of s, f...

 

      55    ALL(c):[x e s & c e s => [f(x)=f(c) => x=c]]

            U Spec, 6

 

     Sufficient: For f(x)=f(y) => x=y

 

      56    x e s & y e s => [f(x)=f(y) => x=y]

            U Spec, 55

 

     Prove: x e s

      

     Apply definition of n

 

      57    x e n <=> x e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => x e b]

            U Spec, 14

 

      58    [x e n => x e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => x e b]]

          & [x e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => x e b] => x e n]

            Iff-And, 57

 

      59    x e n => x e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => x e b]

            Split, 58

 

      60    x e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => x e b] => x e n

            Split, 58

 

      61    x e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => x e b]

            Detach, 59, 53

 

     As Required:

 

      62    x e s

            Split, 61

 

      63    ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => x e b]

            Split, 61

 

     Prove: y e s

    

     Apply definition of n

 

      64    y e n <=> y e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => y e b]

            U Spec, 14

 

      65    [y e n => y e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => y e b]]

          & [y e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => y e b] => y e n]

            Iff-And, 64

 

      66    y e n => y e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => y e b]

            Split, 65

 

      67    y e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => y e b] => y e n

            Split, 65

 

      68    y e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => y e b]

            Detach, 66, 54

 

     As Required:

 

      69    y e s

            Split, 68

 

      70    ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => y e b]

            Split, 68

 

      71    x e s & y e s

            Join, 62, 69

 

      72    f(x)=f(y) => x=y

            Detach, 56, 71

 

PA3

***

 

73    ALL(b):ALL(c):[b e n & c e n => [f(b)=f(c) => b=c]]

      4 Conclusion, 52

 

    

     Prove: ALL(b):[b e n => ~f(b)=s0]

    

     Suppose...

 

      74    x e n

            Premise

 

     Apply definition of s, f

 

      75    x e s => ~f(x)=s0

            U Spec, 10

 

     Prove: x e s

    

     Apply definition of n

 

      76    x e n <=> x e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => x e b]

            U Spec, 14

 

      77    [x e n => x e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => x e b]]

          & [x e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => x e b] => x e n]

            Iff-And, 76

 

      78    x e n => x e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => x e b]

            Split, 77

 

      79    x e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => x e b] => x e n

            Split, 77

 

      80    x e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => x e b]

            Detach, 78, 74

 

     As Required:

 

      81    x e s

            Split, 80

 

      82    ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => x e b]

            Split, 80

 

      83    x e s & ALL(b):[Set(b)

          & s0 e b

          & ALL(c):[c e b & c e s => f(c) e b]

          => x e b]

            Detach, 78, 74

 

      84    ~f(x)=s0

            Detach, 75, 81

 

PA4

***

 

85    ALL(b):[b e n => ~f(b)=s0]

      4 Conclusion, 74

 

    

     Prove: ALL(b):[Set(b)

            & ALL(c):[c e b => c e n]

            & s0 e b

            & ALL(c):[c e b => f(c) e b]

            => ALL(c):[c e n => c e b]]

    

     Suppose...

 

      86    Set(p)

          & ALL(c):[c e p => c e n]

          & s0 e p

          & ALL(c):[c e p => f(c) e p]

            Premise

 

      87    Set(p)

            Split, 86

 

      88    ALL(c):[c e p => c e n]

            Split, 86

 

      89    s0 e p

            Split, 86

 

      90    ALL(c):[c e p => f(c) e p]

            Split, 86

 

         

          Prove: ALL(c):[c e n => c e p]

         

          Suppose...

 

            91    x e n

                  Premise

 

          Apply definition of n

 

            92    x e n <=> x e s & ALL(b):[Set(b)

              & s0 e b

              & ALL(c):[c e b & c e s => f(c) e b]

              => x e b]

                  U Spec, 14

 

            93    [x e n => x e s & ALL(b):[Set(b)

              & s0 e b

              & ALL(c):[c e b & c e s => f(c) e b]

              => x e b]]

              & [x e s & ALL(b):[Set(b)

              & s0 e b

              & ALL(c):[c e b & c e s => f(c) e b]

              => x e b] => x e n]

                  Iff-And, 92

 

            94    x e n => x e s & ALL(b):[Set(b)

              & s0 e b

              & ALL(c):[c e b & c e s => f(c) e b]

              => x e b]

                  Split, 93

 

            95    x e s & ALL(b):[Set(b)

              & s0 e b

              & ALL(c):[c e b & c e s => f(c) e b]

              => x e b] => x e n

                  Split, 93

 

            96    x e s & ALL(b):[Set(b)

              & s0 e b

              & ALL(c):[c e b & c e s => f(c) e b]

              => x e b]

                  Detach, 94, 91

 

            97    x e s

                  Split, 96

 

            98    ALL(b):[Set(b)

              & s0 e b

              & ALL(c):[c e b & c e s => f(c) e b]

              => x e b]

                  Split, 96

 

          Sufficient: x e p

 

            99    Set(p)

              & s0 e p

              & ALL(c):[c e p & c e s => f(c) e p]

              => x e p

                  U Spec, 98

 

                  100  y e p & y e s

                        Premise

 

                  101  y e p

                        Split, 100

 

                  102  y e s

                        Split, 100

 

              Apply previous result

 

                  103  y e p => f(y) e p

                        U Spec, 90

 

                  104  f(y) e p

                        Detach, 103, 101

 

          As Required:

 

            105  ALL(c):[c e p & c e s => f(c) e p]

                  4 Conclusion, 100

 

            106  Set(p) & s0 e p

                  Join, 87, 89

 

            107  Set(p) & s0 e p

              & ALL(c):[c e p & c e s => f(c) e p]

                  Join, 106, 105

 

            108  x e p

                  Detach, 99, 107

 

     As Required:

 

      109  ALL(c):[c e n => c e p]

            4 Conclusion, 91

 

PA5

***

 

110  ALL(b):[Set(b)

     & ALL(c):[c e b => c e n]

     & s0 e b

     & ALL(c):[c e b => f(c) e b]

     => ALL(c):[c e n => c e b]]

      4 Conclusion, 86

 

Joining results...

 

111  Set(n)

     & s0 e n

      Join, 13, 24

 

112  Set(n)

     & s0 e n

     & ALL(a):[a e n => f(a) e n]

      Join, 111, 51

 

113  Set(n)

     & s0 e n

     & ALL(a):[a e n => f(a) e n]

     & ALL(b):ALL(c):[b e n & c e n => [f(b)=f(c) => b=c]]

      Join, 112, 73

 

114  Set(n)

     & s0 e n

     & ALL(a):[a e n => f(a) e n]

     & ALL(b):ALL(c):[b e n & c e n => [f(b)=f(c) => b=c]]

     & ALL(b):[b e n => ~f(b)=s0]

      Join, 113, 85

 

115  Set(n)

     & s0 e n

     & ALL(a):[a e n => f(a) e n]

     & ALL(b):ALL(c):[b e n & c e n => [f(b)=f(c) => b=c]]

     & ALL(b):[b e n => ~f(b)=s0]

     & ALL(b):[Set(b)

     & ALL(c):[c e b => c e n]

     & s0 e b

     & ALL(c):[c e b => f(c) e b]

     => ALL(c):[c e n => c e b]]

      Join, 114, 110

 

Generalizing...

 

116  EXIST(n0):[Set(n) & n0 e n & ALL(a):[a e n => f(a) e n]

     & ALL(b):ALL(c):[b e n & c e n => [f(b)=f(c) => b=c]]

     & ALL(b):[b e n => ~f(b)=n0]

     & ALL(b):[Set(b)

     & ALL(c):[c e b => c e n]

     & n0 e b

     & ALL(c):[c e b => f(c) e b]

     => ALL(c):[c e n => c e b]]]

      E Gen, 115

 

117  EXIST(next):EXIST(n0):[Set(n)

     & n0 e n

     & ALL(a):[a e n => next(a) e n]

     & ALL(b):ALL(c):[b e n & c e n => [next(b)=next(c) => b=c]]

     & ALL(b):[b e n => ~nextb)=n0]

     & ALL(b):[Set(b)

     & ALL(c):[c e b => c e n]

     & n0 e b

     & ALL(c):[c e b => next(c) e b]

     => ALL(c):[c e n => c e b]]]

      E Gen, 116

 

As Required:

 

118  EXIST(n):EXIST(next):EXIST(n0):[Set(n)

     & n0 e n

     & ALL(a):[a e n => next(a) e n]

     & ALL(b):ALL(c):[b e n & c e n => [next(b)=next(c) => b=c]]

     & ALL(b):[b e n => ~next(b)=n0]

     & ALL(b):[Set(b)

     & ALL(c):[c e b => c e n]

     & n0 e b

     & ALL(c):[c e b => next(c) e b]

     => ALL(c):[c e n => c e b]]]

      E Gen, 117