AXIOMS OF MODAL LOGIC DERIVED
*****************************
INTRODUCTION
************
Here are 9 "axioms"
of modal logic that I have been able to derive using DC Proof. No axioms of set
theory are cited here. I made use of the standard translations from modal to
first-order logic given at
https://en.wikipedia.org/wiki/Standard_translation
.
1. []P
<=> ~<>~P (lines 6-21)
2. <>P <=> ~[]~P
(lines 22-37)
3. [](P
/\ Q) <=> []P /\ []Q (lines
38-66)
4. []P
\/ []Q => [](P \/ Q) (lines 67-86)
5. [](P
=> Q) => ([]P => []Q) (lines
87-99)
6. []P
=> P (lines
100-107)
7. []P
=> [][]P (lines
108-136)
8. []P
=> []<>P (lines
137-160)
8b. <>P =>
[]<>P (lines 180-217)
9. P => []<>P (lines 161-178)
This machine-verified formal
proof was written the aid of the author's DC Proof 2.0 software available free
at http://www.dcproof.com
AXIOMS
******
Set of possible worlds
1 Set(w)
Axiom
Properties of accessibility
relation R
2 ALL(a):ALL(b):[R(a,b)
=> a e w & b e w]
Axiom
Reflexive
3 ALL(a):[a e w => R(a,a)]
Axiom
Symmetric
4 ALL(a):ALL(b):[a e w & b e w => [R(a,b)
=> R(b,a)]]
Axiom
Transitive
5 ALL(a):ALL(b):ALL(c):[a e w & b e w & c e w => [R(a,b) & R(b,c) => R(a,c)]]
Axiom
PROOF
*****
[]P <=> ~<>~P
Prove: ALL(a):[a e w
=> [ALL(b):[R(a,b) => P(b)]
<=> ~EXIST(b):[R(a,b) & ~P(b)]]]
Suppose...
6 x e w
Premise
Prove: ALL(b):[R(x,b) => P(b)] => ~EXIST(b):[R(x,b)
& ~P(b)]
Suppose...
7 ALL(b):[R(x,b) => P(b)]
Premise
8 ~EXIST(b):~[R(x,b) => P(b)]
Quant, 7
9 ~EXIST(b):~~[R(x,b) & ~P(b)]
Imply-And, 8
10 ~EXIST(b):[R(x,b) & ~P(b)]
Rem DNeg, 9
As Required:
11 ALL(b):[R(x,b) => P(b)]
=> ~EXIST(b):[R(x,b) & ~P(b)]
4 Conclusion, 7
Prove: ~EXIST(b):[R(x,b) & ~P(b)] => ALL(b):[R(x,b)
=> P(b)]
Suppose...
12 ~EXIST(b):[R(x,b) & ~P(b)]
Premise
13 ~~ALL(b):~[R(x,b) & ~P(b)]
Quant, 12
14 ALL(b):~[R(x,b) & ~P(b)]
Rem DNeg, 13
15 ALL(b):~~[R(x,b) => ~~P(b)]
Imply-And, 14
16 ALL(b):[R(x,b) => ~~P(b)]
Rem DNeg, 15
17 ALL(b):[R(x,b) => P(b)]
Rem DNeg, 16
As Required:
18 ~EXIST(b):[R(x,b) & ~P(b)]
=> ALL(b):[R(x,b) => P(b)]
4 Conclusion, 12
19 [ALL(b):[R(x,b) => P(b)]
=> ~EXIST(b):[R(x,b) & ~P(b)]]
&
[~EXIST(b):[R(x,b) & ~P(b)]
=> ALL(b):[R(x,b) => P(b)]]
Join, 11, 18
20 ALL(b):[R(x,b) => P(b)]
<=>
~EXIST(b):[R(x,b) & ~P(b)]
Iff-And, 19
1. []P
<=> ~<>~P
As Required:
21 ALL(a):[a e w
=>
[ALL(b):[R(a,b) => P(b)]
<=>
~EXIST(b):[R(a,b) &
~P(b)]]]
4 Conclusion, 6
<>P <=> ~[]~P
Prove: ALL(a):[a e w
=> [EXIST(b):[R(a,b) & P(b)]
<=> ~ALL(b):[R(a,b) => ~P(b)]]]
Suppose...
22 x e w
Premise
23 EXIST(b):[R(x,b) & P(b)]
Premise
24 ~ALL(b):~[R(x,b) & P(b)]
Quant, 23
25 ~ALL(b):~~[R(x,b) => ~P(b)]
Imply-And, 24
26 ~ALL(b):[R(x,b) => ~P(b)]
Rem DNeg, 25
27 EXIST(b):[R(x,b) & P(b)]
=> ~ALL(b):[R(x,b) => ~P(b)]
4 Conclusion, 23
28 ~ALL(b):[R(x,b) => ~P(b)]
Premise
29 ~~EXIST(b):~[R(x,b) => ~P(b)]
Quant, 28
30 EXIST(b):~[R(x,b) => ~P(b)]
Rem DNeg, 29
31 EXIST(b):~~[R(x,b) & ~~P(b)]
Imply-And, 30
32 EXIST(b):[R(x,b) & ~~P(b)]
Rem DNeg, 31
33 EXIST(b):[R(x,b) & P(b)]
Rem DNeg, 32
34 ~ALL(b):[R(x,b) => ~P(b)]
=> EXIST(b):[R(x,b) & P(b)]
4 Conclusion, 28
35 [EXIST(b):[R(x,b) & P(b)]
=> ~ALL(b):[R(x,b) => ~P(b)]]
&
[~ALL(b):[R(x,b) => ~P(b)]
=> EXIST(b):[R(x,b) & P(b)]]
Join, 27, 34
36 EXIST(b):[R(x,b) & P(b)]
<=>
~ALL(b):[R(x,b) => ~P(b)]
Iff-And, 35
2. <>P <=> ~[]~P
As Required:
37 ALL(a):[a e w
=>
[EXIST(b):[R(a,b) & P(b)]
<=>
~ALL(b):[R(a,b) =>
~P(b)]]]
4 Conclusion, 22
[](P /\ Q) <=> []P /\ []Q
Prove: ALL(a):[a e w
=> [ALL(b):[R(a,b) => P(b) & Q(b)]
<=> ALL(b):[R(a,b) => P(b)] &
ALL(b):[R(a,b) => Q(b)]]]
Suppose...
38 x e w
Premise
Prove: ALL(b):[R(x,b) => P(b) & Q(b)]
=> ALL(b):[R(x,b) => P(b)] &
ALL(b):[R(x,b) => Q(b)]
Suppose...
39 ALL(b):[R(x,b) => P(b)
& Q(b)]
Premise
Prove: ALL(b):[R(x,b) => P(b)]
Suppose...
40 R(x,y)
Premise
41 R(x,y) => P(y) & Q(y)
U Spec, 39
42 P(y) & Q(y)
Detach, 41, 40
43 P(y)
Split, 42
As Required:
44 ALL(b):[R(x,b) => P(b)]
4 Conclusion, 40
Prove: ALL(b):[R(x,b) => Q(b)]
Suppose...
45 R(x,y)
Premise
46 R(x,y) => P(y) & Q(y)
U Spec, 39
47 P(y) & Q(y)
Detach, 46, 45
48 P(y)
Split, 47
49 Q(y)
Split, 47
As Required:
50 ALL(b):[R(x,b) => Q(b)]
4 Conclusion, 45
51 ALL(b):[R(x,b) => P(b)]
& ALL(b):[R(x,b) => Q(b)]
Join, 44, 50
As Required:
52 ALL(b):[R(x,b) => P(b)
& Q(b)]
=>
ALL(b):[R(x,b) => P(b)]
& ALL(b):[R(x,b) => Q(b)]
4 Conclusion, 39
Prove: ALL(b):[R(x,b) => P(b)] & ALL(b):[R(x,b)
=> Q(b)]
=> ALL(b):[R(x,b) => P(b) & Q(b)]
Suppose...
53 ALL(b):[R(x,b) => P(b)]
& ALL(b):[R(x,b) => Q(b)]
Premise
54 ALL(b):[R(x,b) => P(b)]
Split, 53
55 ALL(b):[R(x,b) => Q(b)]
Split, 53
Prove: ALL(b):[R(x,b) => P(b) & Q(b)]
Suppose...
56 R(x,y)
Premise
57 R(x,y) => P(y)
U Spec, 54
58 P(y)
Detach, 57, 56
59 R(x,y) => Q(y)
U Spec, 55
60 Q(y)
Detach, 59, 56
61 P(y) & Q(y)
Join, 58, 60
As Required:
62 ALL(b):[R(x,b) => P(b)
& Q(b)]
4 Conclusion, 56
As Required:
63 ALL(b):[R(x,b) => P(b)]
& ALL(b):[R(x,b) => Q(b)]
=>
ALL(b):[R(x,b) => P(b)
& Q(b)]
4 Conclusion, 53
64 [ALL(b):[R(x,b) => P(b)
& Q(b)]
=>
ALL(b):[R(x,b) => P(b)]
& ALL(b):[R(x,b) => Q(b)]]
&
[ALL(b):[R(x,b) => P(b)]
& ALL(b):[R(x,b) => Q(b)]
=>
ALL(b):[R(x,b) => P(b)
& Q(b)]]
Join, 52, 63
65 ALL(b):[R(x,b) => P(b)
& Q(b)]
<=>
ALL(b):[R(x,b) => P(b)]
& ALL(b):[R(x,b) => Q(b)]
Iff-And, 64
3. [](P
/\ Q) <=> []P /\ []Q
As Required:
66 ALL(a):[a e w
=>
[ALL(b):[R(a,b) => P(b)
& Q(b)]
<=>
ALL(b):[R(a,b) => P(b)]
& ALL(b):[R(a,b) => Q(b)]]]
4 Conclusion, 38
[]P \/ []Q => [](P \/ Q)
Prove: ALL(a):[a e w => [ALL(b):[R(a,b) => P(b)] |
ALL(b):[R(a,b) => Q(b)] => ALL(b):[R(a,b) => P(b) | Q(b)]]]
Suppose...
67 x e w
Premise
Prove: ALL(b):[R(x,b) => P(b)] | ALL(b):[R(x,b)
=> Q(b)]
=> ALL(b):[R(x,b) => P(b) | Q(b)]
Two cases to consider:
68 ALL(b):[R(x,b) => P(b)] |
ALL(b):[R(x,b) => Q(b)]
Premise
Case 1
Prove: ALL(b):[R(x,b) => P(b)]
=> ALL(b):[R(x,b) => P(b) | Q(b)]
Suppose...
69 ALL(b):[R(x,b) => P(b)]
Premise
Prove: ALL(b):[R(x,b) => P(b) | Q(b)]
Suppose...
70 R(x,y)
Premise
71 R(x,y) => P(y)
U Spec, 69
72 P(y)
Detach, 71, 70
73 P(y) | Q(y)
Arb Or, 72
As Required:
74 ALL(b):[R(x,b) => P(b) |
Q(b)]
4 Conclusion, 70
Case 1
As Required:
75 ALL(b):[R(x,b) => P(b)]
=>
ALL(b):[R(x,b) => P(b) |
Q(b)]
4 Conclusion, 69
Case 2
Prove: ALL(b):[R(x,b) => Q(b)]
=> ALL(b):[R(x,b) => P(b) | Q(b)]
Suppose...
76 ALL(b):[R(x,b) => Q(b)]
Premise
Prove: ALL(b):[R(x,b) => P(b) | Q(b)]
Suppose...
77 R(x,y)
Premise
78 R(x,y) => Q(y)
U Spec, 76
79 Q(y)
Detach, 78, 77
80 P(y) | Q(y)
Arb Or, 79
As Required:
81 ALL(b):[R(x,b) => P(b) |
Q(b)]
4 Conclusion, 77
Case 2
As Required:
82 ALL(b):[R(x,b) => Q(b)]
=>
ALL(b):[R(x,b) => P(b) |
Q(b)]
4 Conclusion, 76
83 [ALL(b):[R(x,b) => P(b)]
=>
ALL(b):[R(x,b) => P(b) |
Q(b)]]
&
[ALL(b):[R(x,b) => Q(b)]
=>
ALL(b):[R(x,b) => P(b) |
Q(b)]]
Join, 75, 82
84 ALL(b):[R(x,b) => P(b) |
Q(b)]
Cases, 68, 83
As Required:
85 ALL(b):[R(x,b) => P(b)] |
ALL(b):[R(x,b) => Q(b)]
=>
ALL(b):[R(x,b) => P(b) |
Q(b)]
4 Conclusion, 68
4. []P
\/ []Q => [](P \/ Q)
As Required:
86 ALL(a):[a e w
=>
[ALL(b):[R(a,b) => P(b)]
| ALL(b):[R(a,b) => Q(b)]
=>
ALL(b):[R(a,b) => P(b) |
Q(b)]]]
4 Conclusion, 67
[](P => Q) => ([]P => []Q)
Prove: ALL(a):[a e w => [ALL(b):[R(a,b) => [P(b)
=> Q(b)]] => [ALL(b):[R(a,b) => P(b)] =>
ALL(b):[R(a,b) => Q(b)]]]]
Suppose...
87 x e w
Premise
Prove: ALL(b):[R(x,b) => [P(b) => Q(b)]]
=> [ALL(b):[R(x,b) => P(b)] => ALL(b):[R(x,b) => Q(b)]]
Suppose..
88 ALL(b):[R(x,b) => [P(b)
=> Q(b)]]
Premise
Prove: ALL(b):[R(x,b) => P(b)] => ALL(b):[R(x,b)
=> Q(b)]
Suppose...
89 ALL(b):[R(x,b) => P(b)]
Premise
Prove: ALL(b):[R(x,b) => Q(b)]
Suppose...
90 R(x,y)
Premise
91 R(x,y) => P(y)
U Spec, 89
92 P(y)
Detach, 91, 90
93 R(x,y) => [P(y) => Q(y)]
U Spec, 88
94 P(y) => Q(y)
Detach, 93, 90
95 Q(y)
Detach, 94, 92
As Required:
96 ALL(b):[R(x,b) => Q(b)]
4 Conclusion, 90
As Required:
97 ALL(b):[R(x,b) => P(b)]
=> ALL(b):[R(x,b) => Q(b)]
4 Conclusion, 89
As Required:
98 ALL(b):[R(x,b) => [P(b)
=> Q(b)]]
=>
[ALL(b):[R(x,b) => P(b)]
=> ALL(b):[R(x,b) => Q(b)]]
4 Conclusion, 88
5. [](P
=> Q) => ([]P => []Q)
As Required:
99 ALL(a):[a e w
=>
[ALL(b):[R(a,b) => [P(b)
=> Q(b)]]
=>
[ALL(b):[R(a,b) => P(b)]
=> ALL(b):[R(a,b) => Q(b)]]]]
4 Conclusion, 87
[]P => P
Prove: ALL(a):[a e w => ALL(b):[R(a,b) => P(b)]
=> P(a)]
Suppose...
100 x e w
Premise
101 ALL(b):[R(x,b) => P(b)]
Premise
102 R(x,x) => P(x)
U Spec, 101
103 x e w => R(x,x)
U Spec, 3
104 R(x,x)
Detach, 103, 100
105 P(x)
Detach, 102, 104
As Required:
106 ALL(b):[R(x,b) => P(b)]
=> P(x)
4 Conclusion, 101
6. []P
=> P
As Required:
107 ALL(a):[a e w =>
[ALL(b):[R(a,b) => P(b)] => P(a)]]
4 Conclusion, 100
[]P => [][]P
Prove: ALL(a):[a e s => [ALL(b):[R(a,b) => P(b)]
=> ALL(b):[R(a,b) => ALL(c):[R(b,c) => P(c)]]]]
Suppose...
108 x e w
Premise
Prove: ALL(b):[R(x,b) => P(b)]
=> ALL(b):[R(x,b) => ALL(c):[R(b,c) => P(c)]]
Suppose...
109 ALL(b):[R(x,b) => P(b)]
Premise
Prove: ALL(b):[R(x,b) => ALL(c):[R(b,c) =>
P(c)]]
Suppose...
110 R(x,y)
Premise
Prove: ALL(c):[R(y,c) => P(c)]
Suppose...
111 R(y,z)
Premise
112 R(x,z) => P(z)
U Spec, 109
113 ALL(b):[R(x,b) => x e w & b e w]
U Spec, 2
114 R(x,y) => x e w & y e w
U Spec, 113
115 x e w & y e w
Detach, 114, 110
116 x e w
Split, 115
117 y e w
Split, 115
118 ALL(b):[R(y,b) => y e w & b e w]
U Spec, 2
119 R(y,z) => y e w & z e w
U Spec, 118
120 y e w & z e w
Detach, 119, 111
121 y e w
Split, 120
122 z e w
Split, 120
123 x e w & y e w
Join, 116, 117
124 x e w & y e w & z e w
Join, 123, 122
125 ALL(b):ALL(c):[x e w & b e w & c e w => [R(x,b) & R(b,c) => R(x,c)]]
U Spec, 5
126 ALL(c):[x e w & y e w & c e w => [R(x,y) & R(y,c) => R(x,c)]]
U Spec, 125
127 x e w & y e w & z e w => [R(x,y) & R(y,z) => R(x,z)]
U Spec, 126
128 R(x,y) & R(y,z) => R(x,z)
Detach, 127, 124
129 R(x,y) & R(y,z)
Join, 110, 111
130 R(x,z)
Detach, 128, 129
131 R(x,z) => P(z)
U Spec, 109
132 P(z)
Detach, 131, 130
As Required:
133 ALL(c):[R(y,c) => P(c)]
4 Conclusion, 111
As Required:
134 ALL(b):[R(x,b) =>
ALL(c):[R(b,c) => P(c)]]
4 Conclusion, 110
As Required:
135 ALL(b):[R(x,b) => P(b)]
=>
ALL(b):[R(x,b) =>
ALL(c):[R(b,c) => P(c)]]
4 Conclusion, 109
7. []P
=> [][]P
As Required:
136 ALL(a):[a e w
=>
[ALL(b):[R(a,b) => P(b)]
=>
ALL(b):[R(a,b) =>
ALL(c):[R(b,c) => P(c)]]]]
4 Conclusion, 108
[]P => []<>P
Prove: ALL(a):[a e w => [ALL(b):[R(a,b) => P(b)]
=> ALL(b):[R(a,b) => EXIST(c):[R(b,c) & P(c)]]]]
137 x e w
Premise
Prove: ALL(b):[R(x,b) => P(b)]
=> ALL(b):[R(x,b) => EXIST(c):[R(b,c) & P(c)]]
Suppose...
138 ALL(b):[R(x,b) => P(b)]
Premise
139 R(x,y)
Premise
140 R(x,y) => P(y)
U Spec, 138
141 P(y)
Detach, 140, 139
142 ALL(b):[x e w & b e w => [R(x,b) => R(b,x)]]
U Spec, 4
143 x e w & y e w => [R(x,y) => R(y,x)]
U Spec, 142
144 ALL(b):[R(x,b) => x e w & b e w]
U Spec, 2
145 R(x,y) => x e w & y e w
U Spec, 144
146 x e w & y e w
Detach, 145, 139
147 x e w
Split, 146
148 y e w
Split, 146
149 x e w & y e w
Join, 137, 148
150 R(x,y) => R(y,x)
Detach, 143, 149
151 R(y,x)
Detach, 150, 139
152 R(x,x) => P(x)
U Spec, 138
153 x e w => R(x,x)
U Spec, 3
154 R(x,x)
Detach, 153, 147
155 P(x)
Detach, 152, 154
156 R(y,x) & P(x)
Join, 151, 155
157 EXIST(c):[R(y,c) & P(c)]
E Gen, 156
158 ALL(b):[R(x,b) =>
EXIST(c):[R(b,c) & P(c)]]
4 Conclusion, 139
As Required:
159 ALL(b):[R(x,b) => P(b)]
=>
ALL(b):[R(x,b) => EXIST(c):[R(b,c) & P(c)]]
4 Conclusion, 138
8. []P
=> []<>P
As Required:
160 ALL(a):[a e w
=>
[ALL(b):[R(a,b) => P(b)]
=>
ALL(b):[R(a,b) =>
EXIST(c):[R(b,c) & P(c)]]]]
4 Conclusion, 137
P => []<>P
Prove: ALL(a):[a e w => [P(a) => [ALL(b):[R(a,b)
=> EXIST(c):[R(b,c) & P(c)]]]]
Suppose...
161 x e w
Premise
Prove: P(x) => ALL(b):[R(x,b) => EXIST(c):[R(b,c) &
P(c)]]
Suppose...
162 P(x)
Premise
Prove: ALL(b):[R(x,b) => EXIST(c):[R(b,c) &
P(c)]]
Suppose...
163 R(x,y)
Premise
164 ALL(b):[x e w & b e w => [R(x,b) => R(b,x)]]
U Spec, 4
165 x e w & y e w => [R(x,y) => R(y,x)]
U Spec, 164
166 ALL(b):[R(x,b) => x e w & b e w]
U Spec, 2
167 R(x,y) => x e w & y e w
U Spec, 166
168 x e w & y e w
Detach, 167, 163
169 x e w
Split, 168
170 y e w
Split, 168
171 x e w & y e w
Join, 161, 170
172 R(x,y) => R(y,x)
Detach, 165, 171
173 R(y,x)
Detach, 172, 163
174 R(y,x) & P(x)
Join, 173, 162
175 EXIST(c):[R(y,c) & P(c)]
E Gen, 174
As Required:
176 ALL(b):[R(x,b) =>
EXIST(c):[R(b,c) & P(c)]]
4 Conclusion, 163
As Required:
177 P(x) => ALL(b):[R(x,b) => EXIST(c):[R(b,c) & P(c)]]
4 Conclusion, 162
9. P => []<>P
As Required:
178 ALL(a):[a e w
=>
[P(a) => ALL(b):[R(a,b) => EXIST(c):[R(b,c) & P(c)]]]]
4 Conclusion, 161
<>P => []<>P
Prove: ALL(a):[a e w
=> [EXIST(b):[R(a,b) & P(b)]
=> ALL(b):[R(a,b) => EXIST(c):[R(b,c) & P(c)]]]]
Suppose...
180 x e w
Premise
Prove: EXIST(b):[R(x,b) & P(b)]
=> ALL(b):[R(x,b) => EXIST(c):[R(b,c) & P(c)]]
Suppose...
181 EXIST(b):[R(x,b) & P(b)]
Premise
182 R(x,y) & P(y)
E Spec, 181
183 R(x,y)
Split, 182
184 P(y)
Split, 182
185 ALL(b):[R(x,b) => x e w & b e w]
U Spec, 3
186 R(x,y) => x e w & y e w
U Spec, 185
187 x e w & y e w
Detach, 186, 183
188 x e w
Split, 187
189 y e w
Split, 187
Prove: ALL(b):[R(x,b) => EXIST(c):[R(b,c) &
P(c)]]
Suppose...
190 R(x,z)
Premise
191 R(x,z) => x e w & z e w
U Spec, 185
192 x e w & z e w
Detach, 191, 190
193 x e w
Split, 192
194 z e w
Split, 192
195 ALL(b):[x e w & b e w => [R(x,b) => R(b,x)]]
U Spec, 5
196 x e w & y e w => [R(x,y) => R(y,x)]
U Spec, 195
197 x e w & y e w
Join, 188, 189
198 R(x,y) => R(y,x)
Detach, 196, 197
199 R(y,x)
Detach, 198, 183
200 ALL(b):ALL(c):[y e w & b e w & c e w => [R(y,b) & R(b,c) => R(y,c)]]
U Spec, 6
201 ALL(c):[y e w & x e w & c e w => [R(y,x) & R(x,c) => R(y,c)]]
U Spec, 200
202 y e w & x e w & z e w => [R(y,x) & R(x,z) => R(y,z)]
U Spec, 201
203 y e w & x e w
Join, 189, 188
204 y e w & x e w & z e w
Join, 203, 194
205 R(y,x) & R(x,z) => R(y,z)
Detach, 202, 204
206 R(y,x) & R(x,z)
Join, 199, 190
207 R(y,z)
Detach, 205, 206
208 ALL(b):[y e w & b e w => [R(y,b) => R(b,y)]]
U Spec, 5
209 y e w & z e w => [R(y,z) => R(z,y)]
U Spec, 208
210 y e w & z e w
Join, 189, 194
211 R(y,z) => R(z,y)
Detach, 209, 210
212 R(z,y)
Detach, 211, 207
213 R(z,y) & P(y)
Join, 212, 184
214 EXIST(c):[R(z,c) & P(c)]
E Gen, 213
As Required:
215 ALL(b):[R(x,b) =>
EXIST(c):[R(b,c) & P(c)]]
4 Conclusion, 190
As Required:
216 EXIST(b):[R(x,b) & P(b)]
=>
ALL(b):[R(x,b) =>
EXIST(c):[R(b,c) & P(c)]]
4 Conclusion, 181
8b. <>P => []<>P
As Required:
217 ALL(a):[a e w
=>
[EXIST(b):[R(a,b) &
P(b)]
=>
ALL(b):[R(a,b) =>
EXIST(c):[R(b,c) & P(c)]]]]
4 Conclusion, 180