Axioms for the Real Numbers Field Axioms ************ Define: real, 0, 1 and operators +, _, *, 1/ 1 Set(real) & ALL(a):ALL(b):[a real & b real => a+b real] & ALL(a):ALL(b):ALL(c):[a real & b real & c real => a+b+c=a+(b+c)] & ALL(a):ALL(b):[a real & b real => a+b=b+a] & 0 real & ALL(a):[a real => a+0=a] & ALL(a):[a real => _a real] & ALL(a):[a real => a+_a=0] & ALL(a):ALL(b):[a real & b real => a*b real] & ALL(a):ALL(b):ALL(c):[a real & b real & c real => a*b*c=a*(b*c)] & ALL(a):ALL(b):[a real & b real => a*b=b*a] & ALL(a):ALL(b):ALL(c):[a real & b real & c real => a*(b+c)=a*b+a*c] & 1 real & ~0=1 & ALL(a):[a real => a*1=a] & ALL(a):[a real & ~a=0 => 1/a real] & ALL(a):[a real & ~a=0 => a*(1/a)=1] Premise Order Axioms ************ 2 Set(pos) & ALL(a):[a pos => a real] & ALL(a):[a real => [a=0 | a pos | _a pos] & ~[a=0 & a pos] & ~[a=0 & _a pos] & ~[a pos & _a pos]] & ALL(a):ALL(b):[a pos & b pos => a+b pos] & ALL(a):ALL(b):[a pos & b pos => a*b pos] & ALL(a):ALL(b):[a real & b real => [a<b <=> b+_a pos]] & ALL(a):ALL(b):[a real & b real => [a<=b <=> a<b | a=b]] Premise Completeness Axiom ****************** 3 ALL(a):[Set(a) & ALL(b):[b a => b real] & EXIST(b):b a & EXIST(b):[b real & ALL(c):[c a => c<=b]] => EXIST(b):[b real & ALL(c):[c a => c<=b] & ALL(c):[c real & ALL(d):[d a => d<=c] => b<=c]]] Premise Define: n, the set of natural numbers 4 Set(n) & ALL(a):[a n <=> a real & [0<a & ALL(b):[Set(b) & ALL(c):[c b => c real] & 1 b & ALL(c):[c b => c+1 b] => a b]]] Premise Define: int, the set of integers 5 Set(int) & ALL(a):[a int <=> a real & [a=0 | a n | _a n]] Premise Define: rat, the set of rational numbers 6 Set(rat) & ALL(a):[a rat <=> a real & EXIST(b):EXIST(c):[b int & c int & a*c=b]] Premise Define: The - operator for real numbers 7 ALL(a):ALL(b):[a real & b real => a-b=a+_b] Premise Define: The / operator for real numbers 8 ALL(a):ALL(b):[a real & b real & ~b=0 => a/b=a*(1/b)] Premise