CATEGORICAL SYLLOGISMS IN FIRST-ORDER LOGIC

===========================================

 

4 Examples from http://en.wikipedia.org/wiki/Syllogism#Barbara_.28AAA-1.29  

 

 

Barbara (AAA-1)

***************

 

All men are mortal

All Greeks are men

---------------------

All Greeks are mortal

 

 

Major Premise:

 

1     ALL(a):[Man(a) => Mortal(a)]

      Premise

 

Minor Premise:

 

2     ALL(a):[Greek(a) => Man(a)]

      Premise

 

     Suppose...

 

      3     Greek(x)

            Premise

 

     Applying Minor Premise

 

      4     Greek(x) => Man(x)

            U Spec, 2

 

     Applying Major premise

 

      5     Man(x) => Mortal(x)

            U Spec, 1

 

      6     Man(x)

            Detach, 4, 3

 

      7     Mortal(x)

            Detach, 5, 6

 

Conclusion:

 

8     ALL(a):[Greek(a) => Mortal(a)]

      4 Conclusion, 3

 

 

 

Celarent (EAE-1)

****************

 

No reptiles have fur

All snakes are reptiles

-----------------------

No snakes have fur

 

 

Major Premise:

 

9     ALL(a):[Reptile(a) => ~Furry(a)]

      Premise

 

Minor Premise:

 

10    ALL(a):[Snake(a) => Reptile(a)]

      Premise

 

     Suppose...

 

      11    Snake(x)

            Premise

 

     Applying Minor Premise...

 

      12    Snake(x) => Reptile(x)

            U Spec, 10

 

     Applying Major Premise...

 

      13    Reptile(x) => ~Furry(x)

            U Spec, 9

 

      14    Reptile(x)

            Detach, 12, 11

 

      15    ~Furry(x)

            Detach, 13, 14

 

Conclusion:

 

16    ALL(a):[Snake(a) => ~Furry(a)]

      4 Conclusion, 11

 

 

 

Darii (AII-1)

*************

 

All rabbits have fur

Some pets are rabbits

---------------------

Some pets have fur

 

 

Major Premise:

 

17    ALL(a):[Rabbit(a) => Furry(a)]

      Premise

 

Minor Premise:

 

18    EXIST(a):[Pet(a) & Rabbit(a)]

      Premise

 

Applying Minor Premise...

 

19    Pet(x) & Rabbit(x)

      E Spec, 18

 

20    Pet(x)

      Split, 19

 

21    Rabbit(x)

      Split, 19

 

Applying Major Premise...

 

22    Rabbit(x) => Furry(x)

      U Spec, 17

 

23    Furry(x)

      Detach, 22, 21

 

Joining results...

 

24    Pet(x) & Furry(x)

      Join, 20, 23

 

Conclusion:

 

25    EXIST(a):[Pet(a) & Furry(a)]

      E Gen, 24

 

 

 

Ferio (EIO-1)

*************

 

No homework is fun

Some reading is homework

------------------------

Some reading is not fun

 

 

Major Premise:

 

26    ALL(a):[Homework(a) => ~Fun(a)]

      Premise

 

Minor Premise:

 

27    EXIST(a):[Reading(a) & Homework(a)]

      Premise

 

Applying Minor Premise...

 

28    Reading(y) & Homework(y)

      E Spec, 27

 

29    Reading(y)

      Split, 28

 

30    Homework(y)

      Split, 28

 

Applying Major Premise...

 

31    Homework(y) => ~Fun(y)

      U Spec, 26

 

32    ~Fun(y)

      Detach, 31, 30

 

Combining results...

 

33    Reading(y) & ~Fun(y)

      Join, 29, 32

 

Conclusion:

 

34    EXIST(a):[Reading(a) & ~Fun(a)]

      E Gen, 33