Introduction                           <------  User Comment (blue)

------------

 

Here, we prove that if f is a function mapping x to y, and g is a function

mapping y to z, then the composition of g and f maps x to z.

 

 

Logical Symbols

---------------

 

xey         means x is an element of y

 

f(x)        is the image of x under the function f

 

g(x)        is the image of x under the function g

 

ALL(x):     means "for all x, we have..."

 

=>          means "implies"

 

<=>         means "if and only if"

 

~           means "not"

 

 

Proof

-----

 

Suppose f is a function mapping the set x to the set y.

 

1     ALL(a):[a e x => f(a) e y]

      Premise

 

Suppose further that g is a function mapping the set y to the set z.

 

2     ALL(a):[a e y => g(a) e z]

      Premise

 

     Prove: p e x => g(f(p)) e z

    

     Suppose...

 

      3     p e x

            Premise

 

     Applying the definition of f...

 

      4     p e x => f(p) e y

            U Spec, 1

 

      5     f(p) e y

            Detach, 4, 3

 

     Applying the defintion of g...

 

      6     f(p) e y => g(f(p)) e z

            U Spec, 2

 

      7     g(f(p)) e z

            Detach, 6, 5

 

As Required:

 

8     p e x => g(f(p)) e z            <-------- Universal generalization possible,

      4 Conclusion, 3                     for green variables, not for red variables.

 

Generalizing...

 

9     ALL(a):[a e x => g(f(a)) e z]   <-------- Universal generalization

      U Gen, 8