THEOREM

*******

 

We can construct, i.e. prove the existence of the set of positive real numbers (rp) starting from Peano's Axioms.

 

Prove: EXIST(rp):ALL(a):[a e rp

       <=> Set(a) & ALL(d):[d e a => d e qp]

       & EXIST(b):b e a

       & EXIST(b):[b e qp & ~b e a]

       & ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]

       & ALL(b):[b e a => EXIST(c):[c e a & b<c]]]

 

where < is the ordering on the set of positive rational numbers qp.

 

 

This proof was written and verified with the aid of the author's DC Proof 2.0 software available free at http://www.dcproof.com

 

 

PEANO'S AXIOMS

**************

 

1     Set(n)

      Axiom

 

2     1 e n

      Axiom

 

3     ALL(a):[a e n => s(a) e n]

      Axiom

 

4     ALL(a):ALL(b):[a e n & b e n => [s(a)=s(b) => a=b]]

      Axiom

 

5     ALL(a):[a e n => ~s(a)=1]

      Axiom

 

6     ALL(a):[Set(a) & ALL(b):[b e a => b e n]

     => [1 e a & ALL(b):[b e a => s(b) e a]

     => ALL(b):[b e n => b e a]]]

      Axiom

 

 

FROM PREVIOUS RESULTS

*********************

 

Define: qp

**********

 

The set of positive rational numbers where < is the ordering on the set of natural numbers

 

7     Set(qp)

      Axiom

 

8     ALL(a):[a e qp

     <=> Set'(a)

     & ALL(b):ALL(c):[(b,c) e a => b e n & c e n]

     & EXIST(b):EXIST(c):[(b,c) e a & ALL(d):ALL(e):[d e n & e e n => [(d,e) e a <=> b*e=d*c]]]]

      Axiom

 

 

Define: < on qp

***************

 

Note that the '<' to the right of the biconditional refers to the ordering on the set of natural numbers.

The variables c, d, e, f will always be natural numbers.

 

9     ALL(a):ALL(b):[a e qp & b e qp

     => [a<b

     <=> ALL(c):ALL(d):ALL(e):ALL(f):[(c,d) e a & (e,f) e b => c*f<e*d]]]

      Axiom

 

 

Define: < on n

**************

 

10    ALL(a):ALL(b):[a e n & b e n => [a<b <=> EXIST(c):[c e n & a+c=b]]]

      Axiom

 

 

Define: + on n

**************

 

11    ALL(a):ALL(b):[a e n & b e n => a+b e n]

     & ALL(a):[a e n => a+1=s(a)]

     & ALL(a):ALL(b):[a e n & b e n => a+s(b)=s(a+b)]

      Axiom

 

Define: * on n

**************

 

12    ALL(a):ALL(b):[a e n & b e n => a*b e n]

     & ALL(a):[a e n => a*1=a]

     & ALL(a):ALL(b):[a e n & b e n => a*(b+1)=a*b+a]

      Axiom

 

 

PROOF

*****

 

Apply the Power Set Axiom

 

13    ALL(a):[Set(a) => EXIST(b):[Set(b)

     & ALL(c):[c e b <=> Set(c) & ALL(d):[d e c => d e a]]]]

      Power Set

 

14    Set(qp) => EXIST(b):[Set(b)

     & ALL(c):[c e b <=> Set(c) & ALL(d):[d e c => d e qp]]]

      U Spec, 13

 

15    EXIST(b):[Set(b)

     & ALL(c):[c e b <=> Set(c) & ALL(d):[d e c => d e qp]]]

      Detach, 14, 7

 

16    Set(pqp)

     & ALL(c):[c e pqp <=> Set(c) & ALL(d):[d e c => d e qp]]

      E Spec, 15

 

 

Define: pqp 

***********

 

The power set of qp

 

17    Set(pqp)

      Split, 16

 

18    ALL(c):[c e pqp <=> Set(c) & ALL(d):[d e c => d e qp]]

      Split, 16

 

 

Apply the Subset Axiom

 

19    EXIST(sub):[Set(sub) & ALL(a):[a e sub <=> a e pqp & [EXIST(b):b e a

     & EXIST(b):[b e qp & ~b e a]

     & ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]

     & ALL(b):[b e a => EXIST(c):[c e a & b<c]]]]]

      Subset, 17

 

20    Set(rp) & ALL(a):[a e rp <=> a e pqp & [EXIST(b):b e a

     & EXIST(b):[b e qp & ~b e a]

     & ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]

     & ALL(b):[b e a => EXIST(c):[c e a & b<c]]]]

      E Spec, 19

 

Define: rp

 

The set of positive real numbers

 

21    Set(rp)

      Split, 20

 

22    ALL(a):[a e rp <=> a e pqp & [EXIST(b):b e a

     & EXIST(b):[b e qp & ~b e a]

     & ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]

     & ALL(b):[b e a => EXIST(c):[c e a & b<c]]]]

      Split, 20

 

    

     Recast this definition without making reference to the set pqp.

    

     '=>'

    

     Prove: ALL(a):[a e rp

            => Set(a) & ALL(d):[d e a => d e qp]

            & EXIST(b):b e a

            & EXIST(b):[b e qp & ~b e a]

            & ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]

            & ALL(b):[b e a => EXIST(c):[c e a & b<c]]]

    

     Suppose...

 

      23    x e rp

            Premise

 

     Apply definition of rp

 

      24    x e rp <=> x e pqp & [EXIST(b):b e x

          & EXIST(b):[b e qp & ~b e x]

          & ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]

          & ALL(b):[b e x => EXIST(c):[c e x & b<c]]]

            U Spec, 22

 

      25    [x e rp => x e pqp & [EXIST(b):b e x

          & EXIST(b):[b e qp & ~b e x]

          & ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]

          & ALL(b):[b e x => EXIST(c):[c e x & b<c]]]]

          & [x e pqp & [EXIST(b):b e x

          & EXIST(b):[b e qp & ~b e x]

          & ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]

          & ALL(b):[b e x => EXIST(c):[c e x & b<c]]] => x e rp]

            Iff-And, 24

 

      26    x e rp => x e pqp & [EXIST(b):b e x

          & EXIST(b):[b e qp & ~b e x]

          & ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]

          & ALL(b):[b e x => EXIST(c):[c e x & b<c]]]

            Split, 25

 

      27    x e pqp & [EXIST(b):b e x

          & EXIST(b):[b e qp & ~b e x]

          & ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]

          & ALL(b):[b e x => EXIST(c):[c e x & b<c]]] => x e rp

            Split, 25

 

      28    x e pqp & [EXIST(b):b e x

          & EXIST(b):[b e qp & ~b e x]

          & ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]

          & ALL(b):[b e x => EXIST(c):[c e x & b<c]]]

            Detach, 26, 23

 

      29    x e pqp

            Split, 28

 

      30    EXIST(b):b e x

          & EXIST(b):[b e qp & ~b e x]

          & ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]

          & ALL(b):[b e x => EXIST(c):[c e x & b<c]]

            Split, 28

 

      31    EXIST(b):b e x

            Split, 30

 

      32    EXIST(b):[b e qp & ~b e x]

            Split, 30

 

      33    ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]

            Split, 30

 

      34    ALL(b):[b e x => EXIST(c):[c e x & b<c]]

            Split, 30

 

     Apply definition of pqp

 

      35    x e pqp <=> Set(x) & ALL(d):[d e x => d e qp]

            U Spec, 18

 

      36    [x e pqp => Set(x) & ALL(d):[d e x => d e qp]]

          & [Set(x) & ALL(d):[d e x => d e qp] => x e pqp]

            Iff-And, 35

 

      37    x e pqp => Set(x) & ALL(d):[d e x => d e qp]

            Split, 36

 

      38    Set(x) & ALL(d):[d e x => d e qp] => x e pqp

            Split, 36

 

      39    Set(x) & ALL(d):[d e x => d e qp]

            Detach, 37, 29

 

     Joining results...

 

      40    Set(x) & ALL(d):[d e x => d e qp]

          & EXIST(b):b e x

            Join, 39, 31

 

      41    Set(x) & ALL(d):[d e x => d e qp]

          & EXIST(b):b e x

          & EXIST(b):[b e qp & ~b e x]

            Join, 40, 32

 

      42    Set(x) & ALL(d):[d e x => d e qp]

          & EXIST(b):b e x

          & EXIST(b):[b e qp & ~b e x]

          & ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]

            Join, 41, 33

 

      43    Set(x) & ALL(d):[d e x => d e qp]

          & EXIST(b):b e x

          & EXIST(b):[b e qp & ~b e x]

          & ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]

          & ALL(b):[b e x => EXIST(c):[c e x & b<c]]

            Join, 42, 34

 

As Required:

 

44    ALL(a):[a e rp

     => Set(a) & ALL(d):[d e a => d e qp]

     & EXIST(b):b e a

     & EXIST(b):[b e qp & ~b e a]

     & ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]

     & ALL(b):[b e a => EXIST(c):[c e a & b<c]]]

      4 Conclusion, 23

 

    

     '<='

    

     Prove: ALL(a):[Set(a) & ALL(d):[d e a => d e qp]

            & EXIST(b):b e a

            & EXIST(b):[b e qp & ~b e a]

            & ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]

            & ALL(b):[b e a => EXIST(c):[c e a & b<c]]

            => a e rp]

    

     Suppose...

 

      45    Set(x) & ALL(d):[d e x => d e qp]

          & EXIST(b):b e x

          & EXIST(b):[b e qp & ~b e x]

          & ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]

          & ALL(b):[b e x => EXIST(c):[c e x & b<c]]

            Premise

 

      46    Set(x)

            Split, 45

 

      47    ALL(d):[d e x => d e qp]

            Split, 45

 

      48    EXIST(b):b e x

            Split, 45

 

      49    EXIST(b):[b e qp & ~b e x]

            Split, 45

 

      50    ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]

            Split, 45

 

      51    ALL(b):[b e x => EXIST(c):[c e x & b<c]]

            Split, 45

 

     Apply definition of rp

 

      52    x e rp <=> x e pqp & [EXIST(b):b e x

          & EXIST(b):[b e qp & ~b e x]

          & ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]

          & ALL(b):[b e x => EXIST(c):[c e x & b<c]]]

            U Spec, 22

 

      53    [x e rp => x e pqp & [EXIST(b):b e x

          & EXIST(b):[b e qp & ~b e x]

          & ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]

          & ALL(b):[b e x => EXIST(c):[c e x & b<c]]]]

          & [x e pqp & [EXIST(b):b e x

          & EXIST(b):[b e qp & ~b e x]

          & ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]

          & ALL(b):[b e x => EXIST(c):[c e x & b<c]]] => x e rp]

            Iff-And, 52

 

      54    x e rp => x e pqp & [EXIST(b):b e x

          & EXIST(b):[b e qp & ~b e x]

          & ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]

          & ALL(b):[b e x => EXIST(c):[c e x & b<c]]]

            Split, 53

 

     Sufficient For: x e rp

 

      55    x e pqp & [EXIST(b):b e x

          & EXIST(b):[b e qp & ~b e x]

          & ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]

          & ALL(b):[b e x => EXIST(c):[c e x & b<c]]] => x e rp

            Split, 53

 

     Apply definition of pqp

 

      56    x e pqp <=> Set(x) & ALL(d):[d e x => d e qp]

            U Spec, 18

 

      57    [x e pqp => Set(x) & ALL(d):[d e x => d e qp]]

          & [Set(x) & ALL(d):[d e x => d e qp] => x e pqp]

            Iff-And, 56

 

      58    x e pqp => Set(x) & ALL(d):[d e x => d e qp]

            Split, 57

 

     Sufficient For: x e pqp

 

      59    Set(x) & ALL(d):[d e x => d e qp] => x e pqp

            Split, 57

 

      60    Set(x) & ALL(d):[d e x => d e qp]

            Join, 46, 47

 

      61    x e pqp

            Detach, 59, 60

 

     Joing results...

 

      62    EXIST(b):b e x & EXIST(b):[b e qp & ~b e x]

            Join, 48, 49

 

      63    EXIST(b):b e x & EXIST(b):[b e qp & ~b e x]

          & ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]

            Join, 62, 50

 

      64    EXIST(b):b e x & EXIST(b):[b e qp & ~b e x]

          & ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]

          & ALL(b):[b e x => EXIST(c):[c e x & b<c]]

            Join, 63, 51

 

      65    x e pqp

          & [EXIST(b):b e x & EXIST(b):[b e qp & ~b e x]

          & ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]

          & ALL(b):[b e x => EXIST(c):[c e x & b<c]]]

            Join, 61, 64

 

      66    x e rp

            Detach, 55, 65

 

As Required:

 

67    ALL(a):[Set(a) & ALL(d):[d e a => d e qp]

     & EXIST(b):b e a

     & EXIST(b):[b e qp & ~b e a]

     & ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]

     & ALL(b):[b e a => EXIST(c):[c e a & b<c]]

     => a e rp]

      4 Conclusion, 45

 

Joining results...

 

68    ALL(a):[[a e rp

     => Set(a) & ALL(d):[d e a => d e qp]

     & EXIST(b):b e a

     & EXIST(b):[b e qp & ~b e a]

     & ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]

     & ALL(b):[b e a => EXIST(c):[c e a & b<c]]] & [Set(a) & ALL(d):[d e a => d e qp]

     & EXIST(b):b e a

     & EXIST(b):[b e qp & ~b e a]

     & ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]

     & ALL(b):[b e a => EXIST(c):[c e a & b<c]]

     => a e rp]]

      Join, 44, 67

 

Apply Iff-And Rule

 

69    ALL(a):[a e rp

     <=> Set(a) & ALL(d):[d e a => d e qp]

     & EXIST(b):b e a

     & EXIST(b):[b e qp & ~b e a]

     & ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]

     & ALL(b):[b e a => EXIST(c):[c e a & b<c]]]

      Iff-And, 68

 

 

Generalizing...

 

As Required:

 

70    EXIST(rp):ALL(a):[a e rp

     <=> Set(a) & ALL(d):[d e a => d e qp]

     & EXIST(b):b e a

     & EXIST(b):[b e qp & ~b e a]

     & ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]

     & ALL(b):[b e a => EXIST(c):[c e a & b<c]]]

      E Gen, 69