THEOREM
*******
We can construct, i.e. prove the existence of the set of positive real numbers (rp) starting from Peano's Axioms.
Prove: EXIST(rp):ALL(a):[a e rp
<=> Set(a) & ALL(d):[d e a => d e qp]
& EXIST(b):b e a
& EXIST(b):[b e qp & ~b e a]
& ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]
& ALL(b):[b e a => EXIST(c):[c e a & b<c]]]
where < is the ordering on the set of positive rational numbers qp.
This proof was written and verified with the aid of the author's DC Proof 2.0 software available free at http://www.dcproof.com
PEANO'S AXIOMS
**************
1 Set(n)
Axiom
2 1 e n
Axiom
3 ALL(a):[a e n => s(a) e n]
Axiom
4 ALL(a):ALL(b):[a e n & b e n => [s(a)=s(b) => a=b]]
Axiom
5 ALL(a):[a e n => ~s(a)=1]
Axiom
6 ALL(a):[Set(a) & ALL(b):[b e a => b e n]
=> [1 e a & ALL(b):[b e a => s(b) e a]
=> ALL(b):[b e n => b e a]]]
Axiom
FROM PREVIOUS RESULTS
*********************
Define: qp
**********
The set of positive rational numbers where < is the ordering on the set of natural numbers
7 Set(qp)
Axiom
8 ALL(a):[a e qp
<=> Set'(a)
& ALL(b):ALL(c):[(b,c) e a => b e n & c e n]
& EXIST(b):EXIST(c):[(b,c) e a & ALL(d):ALL(e):[d e n & e e n => [(d,e) e a <=> b*e=d*c]]]]
Axiom
Define: < on qp
***************
Note that the '<' to the right of the biconditional refers to the ordering on the set of natural numbers.
The variables c, d, e, f will always be natural numbers.
9 ALL(a):ALL(b):[a e qp & b e qp
=> [a<b
<=> ALL(c):ALL(d):ALL(e):ALL(f):[(c,d) e a & (e,f) e b => c*f<e*d]]]
Axiom
Define: < on n
**************
10 ALL(a):ALL(b):[a e n & b e n => [a<b <=> EXIST(c):[c e n & a+c=b]]]
Axiom
Define: + on n
**************
11 ALL(a):ALL(b):[a e n & b e n => a+b e n]
& ALL(a):[a e n => a+1=s(a)]
& ALL(a):ALL(b):[a e n & b e n => a+s(b)=s(a+b)]
Axiom
Define: * on n
**************
12 ALL(a):ALL(b):[a e n & b e n => a*b e n]
& ALL(a):[a e n => a*1=a]
& ALL(a):ALL(b):[a e n & b e n => a*(b+1)=a*b+a]
Axiom
PROOF
*****
Apply the Power Set Axiom
13 ALL(a):[Set(a) => EXIST(b):[Set(b)
& ALL(c):[c e b <=> Set(c) & ALL(d):[d e c => d e a]]]]
Power Set
14 Set(qp) => EXIST(b):[Set(b)
& ALL(c):[c e b <=> Set(c) & ALL(d):[d e c => d e qp]]]
U Spec, 13
15 EXIST(b):[Set(b)
& ALL(c):[c e b <=> Set(c) & ALL(d):[d e c => d e qp]]]
Detach, 14, 7
16 Set(pqp)
& ALL(c):[c e pqp <=> Set(c) & ALL(d):[d e c => d e qp]]
E Spec, 15
Define: pqp
***********
The power set of qp
17 Set(pqp)
Split, 16
18 ALL(c):[c e pqp <=> Set(c) & ALL(d):[d e c => d e qp]]
Split, 16
Apply the Subset Axiom
19 EXIST(sub):[Set(sub) & ALL(a):[a e sub <=> a e pqp & [EXIST(b):b e a
& EXIST(b):[b e qp & ~b e a]
& ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]
& ALL(b):[b e a => EXIST(c):[c e a & b<c]]]]]
Subset, 17
20 Set(rp) & ALL(a):[a e rp <=> a e pqp & [EXIST(b):b e a
& EXIST(b):[b e qp & ~b e a]
& ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]
& ALL(b):[b e a => EXIST(c):[c e a & b<c]]]]
E Spec, 19
Define: rp
The set of positive real numbers
21 Set(rp)
Split, 20
22 ALL(a):[a e rp <=> a e pqp & [EXIST(b):b e a
& EXIST(b):[b e qp & ~b e a]
& ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]
& ALL(b):[b e a => EXIST(c):[c e a & b<c]]]]
Split, 20
Recast this definition without making reference to the set pqp.
'=>'
Prove: ALL(a):[a e rp
=> Set(a) & ALL(d):[d e a => d e qp]
& EXIST(b):b e a
& EXIST(b):[b e qp & ~b e a]
& ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]
& ALL(b):[b e a => EXIST(c):[c e a & b<c]]]
Suppose...
23 x e rp
Premise
Apply definition of rp
24 x e rp <=> x e pqp & [EXIST(b):b e x
& EXIST(b):[b e qp & ~b e x]
& ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]
& ALL(b):[b e x => EXIST(c):[c e x & b<c]]]
U Spec, 22
25 [x e rp => x e pqp & [EXIST(b):b e x
& EXIST(b):[b e qp & ~b e x]
& ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]
& ALL(b):[b e x => EXIST(c):[c e x & b<c]]]]
& [x e pqp & [EXIST(b):b e x
& EXIST(b):[b e qp & ~b e x]
& ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]
& ALL(b):[b e x => EXIST(c):[c e x & b<c]]] => x e rp]
Iff-And, 24
26 x e rp => x e pqp & [EXIST(b):b e x
& EXIST(b):[b e qp & ~b e x]
& ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]
& ALL(b):[b e x => EXIST(c):[c e x & b<c]]]
Split, 25
27 x e pqp & [EXIST(b):b e x
& EXIST(b):[b e qp & ~b e x]
& ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]
& ALL(b):[b e x => EXIST(c):[c e x & b<c]]] => x e rp
Split, 25
28 x e pqp & [EXIST(b):b e x
& EXIST(b):[b e qp & ~b e x]
& ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]
& ALL(b):[b e x => EXIST(c):[c e x & b<c]]]
Detach, 26, 23
29 x e pqp
Split, 28
30 EXIST(b):b e x
& EXIST(b):[b e qp & ~b e x]
& ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]
& ALL(b):[b e x => EXIST(c):[c e x & b<c]]
Split, 28
31 EXIST(b):b e x
Split, 30
32 EXIST(b):[b e qp & ~b e x]
Split, 30
33 ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]
Split, 30
34 ALL(b):[b e x => EXIST(c):[c e x & b<c]]
Split, 30
Apply definition of pqp
35 x e pqp <=> Set(x) & ALL(d):[d e x => d e qp]
U Spec, 18
36 [x e pqp => Set(x) & ALL(d):[d e x => d e qp]]
& [Set(x) & ALL(d):[d e x => d e qp] => x e pqp]
Iff-And, 35
37 x e pqp => Set(x) & ALL(d):[d e x => d e qp]
Split, 36
38 Set(x) & ALL(d):[d e x => d e qp] => x e pqp
Split, 36
39 Set(x) & ALL(d):[d e x => d e qp]
Detach, 37, 29
Joining results...
40 Set(x) & ALL(d):[d e x => d e qp]
& EXIST(b):b e x
Join, 39, 31
41 Set(x) & ALL(d):[d e x => d e qp]
& EXIST(b):b e x
& EXIST(b):[b e qp & ~b e x]
Join, 40, 32
42 Set(x) & ALL(d):[d e x => d e qp]
& EXIST(b):b e x
& EXIST(b):[b e qp & ~b e x]
& ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]
Join, 41, 33
43 Set(x) & ALL(d):[d e x => d e qp]
& EXIST(b):b e x
& EXIST(b):[b e qp & ~b e x]
& ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]
& ALL(b):[b e x => EXIST(c):[c e x & b<c]]
Join, 42, 34
As Required:
44 ALL(a):[a e rp
=> Set(a) & ALL(d):[d e a => d e qp]
& EXIST(b):b e a
& EXIST(b):[b e qp & ~b e a]
& ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]
& ALL(b):[b e a => EXIST(c):[c e a & b<c]]]
4 Conclusion, 23
'<='
Prove: ALL(a):[Set(a) & ALL(d):[d e a => d e qp]
& EXIST(b):b e a
& EXIST(b):[b e qp & ~b e a]
& ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]
& ALL(b):[b e a => EXIST(c):[c e a & b<c]]
=> a e rp]
Suppose...
45 Set(x) & ALL(d):[d e x => d e qp]
& EXIST(b):b e x
& EXIST(b):[b e qp & ~b e x]
& ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]
& ALL(b):[b e x => EXIST(c):[c e x & b<c]]
Premise
46 Set(x)
Split, 45
47 ALL(d):[d e x => d e qp]
Split, 45
48 EXIST(b):b e x
Split, 45
49 EXIST(b):[b e qp & ~b e x]
Split, 45
50 ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]
Split, 45
51 ALL(b):[b e x => EXIST(c):[c e x & b<c]]
Split, 45
Apply definition of rp
52 x e rp <=> x e pqp & [EXIST(b):b e x
& EXIST(b):[b e qp & ~b e x]
& ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]
& ALL(b):[b e x => EXIST(c):[c e x & b<c]]]
U Spec, 22
53 [x e rp => x e pqp & [EXIST(b):b e x
& EXIST(b):[b e qp & ~b e x]
& ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]
& ALL(b):[b e x => EXIST(c):[c e x & b<c]]]]
& [x e pqp & [EXIST(b):b e x
& EXIST(b):[b e qp & ~b e x]
& ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]
& ALL(b):[b e x => EXIST(c):[c e x & b<c]]] => x e rp]
Iff-And, 52
54 x e rp => x e pqp & [EXIST(b):b e x
& EXIST(b):[b e qp & ~b e x]
& ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]
& ALL(b):[b e x => EXIST(c):[c e x & b<c]]]
Split, 53
Sufficient For: x e rp
55 x e pqp & [EXIST(b):b e x
& EXIST(b):[b e qp & ~b e x]
& ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]
& ALL(b):[b e x => EXIST(c):[c e x & b<c]]] => x e rp
Split, 53
Apply definition of pqp
56 x e pqp <=> Set(x) & ALL(d):[d e x => d e qp]
U Spec, 18
57 [x e pqp => Set(x) & ALL(d):[d e x => d e qp]]
& [Set(x) & ALL(d):[d e x => d e qp] => x e pqp]
Iff-And, 56
58 x e pqp => Set(x) & ALL(d):[d e x => d e qp]
Split, 57
Sufficient For: x e pqp
59 Set(x) & ALL(d):[d e x => d e qp] => x e pqp
Split, 57
60 Set(x) & ALL(d):[d e x => d e qp]
Join, 46, 47
61 x e pqp
Detach, 59, 60
Joing results...
62 EXIST(b):b e x & EXIST(b):[b e qp & ~b e x]
Join, 48, 49
63 EXIST(b):b e x & EXIST(b):[b e qp & ~b e x]
& ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]
Join, 62, 50
64 EXIST(b):b e x & EXIST(b):[b e qp & ~b e x]
& ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]
& ALL(b):[b e x => EXIST(c):[c e x & b<c]]
Join, 63, 51
65 x e pqp
& [EXIST(b):b e x & EXIST(b):[b e qp & ~b e x]
& ALL(b):[b e x => ALL(c):[c e qp => [c<b => c e x]]]
& ALL(b):[b e x => EXIST(c):[c e x & b<c]]]
Join, 61, 64
66 x e rp
Detach, 55, 65
As Required:
67 ALL(a):[Set(a) & ALL(d):[d e a => d e qp]
& EXIST(b):b e a
& EXIST(b):[b e qp & ~b e a]
& ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]
& ALL(b):[b e a => EXIST(c):[c e a & b<c]]
=> a e rp]
4 Conclusion, 45
Joining results...
68 ALL(a):[[a e rp
=> Set(a) & ALL(d):[d e a => d e qp]
& EXIST(b):b e a
& EXIST(b):[b e qp & ~b e a]
& ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]
& ALL(b):[b e a => EXIST(c):[c e a & b<c]]] & [Set(a) & ALL(d):[d e a => d e qp]
& EXIST(b):b e a
& EXIST(b):[b e qp & ~b e a]
& ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]
& ALL(b):[b e a => EXIST(c):[c e a & b<c]]
=> a e rp]]
Join, 44, 67
Apply Iff-And Rule
69 ALL(a):[a e rp
<=> Set(a) & ALL(d):[d e a => d e qp]
& EXIST(b):b e a
& EXIST(b):[b e qp & ~b e a]
& ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]
& ALL(b):[b e a => EXIST(c):[c e a & b<c]]]
Iff-And, 68
Generalizing...
As Required:
70 EXIST(rp):ALL(a):[a e rp
<=> Set(a) & ALL(d):[d e a => d e qp]
& EXIST(b):b e a
& EXIST(b):[b e qp & ~b e a]
& ALL(b):[b e a => ALL(c):[c e qp => [c<b => c e a]]]
& ALL(b):[b e a => EXIST(c):[c e a & b<c]]]
E Gen, 69