LEMMA 3  (Cantor's Theorem)

*******

 

Suppose p is the power set of s.

Then there exists no surjection f: s --> p.

 

(This proof was prepared with the use of the author's DC Proof 2.0 software available at http://www.dcproof.com )

 

 

OUTLINE

*******

 

Suppose p is the power set of s.

Suppose to contrary that there exists surjection f mapping s onto p, and obtain a contradiction.

Construct subset k of s such that for each element x, we have ~x e f(x).

We have k e s. Let k' be the pre-image of k. Derive the contradiction k' e k and ~k' e k.

 

 

DEFINITIONS

***********

 

Define: Surjection

 

1     ALL(f):ALL(a):ALL(b):[Surjection(f,a,b) <=> ALL(c):[c e b => EXIST(d):[d e a & f(d)=c]]]

      Axiom

 

 

     PROOF OF LEMMA 3

     ****************

 

     Suppose p is the power set of s

 

      2     Set(s)

          & Set(p)

          & ALL(c):[c e p <=> Set(c) & ALL(d):[d e c => d e s]]

            Premise

 

      3     Set(s)

            Split, 2

 

     Define: p  (power set of s)

 

      4     Set(p)

            Split, 2

 

      5     ALL(c):[c e p <=> Set(c) & ALL(d):[d e c => d e s]]

            Split, 2

 

         

          Prove there exists no surjection mapping s to p.

         

          Suppose f is a function mapping s to p.

 

            6     ALL(a):[a e s => f(a) e p]

                  Premise

 

              Prove f is not a surjection.

             

              Suppose to the contrary that f is a surjection, and obtain a contradiction.

 

                  7     Surjection(f,s,p)

                        Premise

 

              Apply definition of Surjection

 

                  8     ALL(a):ALL(b):[Surjection(f,a,b) <=> ALL(c):[c e b => EXIST(d):[d e a & f(d)=c]]]

                        U Spec, 1

 

                  9     ALL(b):[Surjection(f,s,b) <=> ALL(c):[c e b => EXIST(d):[d e s & f(d)=c]]]

                        U Spec, 8

 

                  10    Surjection(f,s,p) <=> ALL(c):[c e p => EXIST(d):[d e s & f(d)=c]]

                        U Spec, 9

 

                  11    [Surjection(f,s,p) => ALL(c):[c e p => EXIST(d):[d e s & f(d)=c]]]

                   & [ALL(c):[c e p => EXIST(d):[d e s & f(d)=c]] => Surjection(f,s,p)]

                        Iff-And, 10

 

                  12    Surjection(f,s,p) => ALL(c):[c e p => EXIST(d):[d e s & f(d)=c]]

                        Split, 11

 

                  13    ALL(c):[c e p => EXIST(d):[d e s & f(d)=c]] => Surjection(f,s,p)

                        Split, 11

 

                  14    ALL(c):[c e p => EXIST(d):[d e s & f(d)=c]]

                        Detach, 12, 7

 

               Construct subset k of s such that for each element x, we have ~x e f(x).

             

               Apply Subset Axiom.

 

                  15    EXIST(sub):[Set(sub) & ALL(a):[a e sub <=> a e s & ~a e f(a)]]

                        Subset, 3

 

                  16    Set(k) & ALL(a):[a e k <=> a e s & ~a e f(a)]

                        E Spec, 15

 

               Define: k

 

                  17    Set(k)

                        Split, 16

 

                  18    ALL(a):[a e k <=> a e s & ~a e f(a)]

                        Split, 16

 

              Prove: k e p

             

              Apply definition of p

 

                  19    k e p <=> Set(k) & ALL(d):[d e k => d e s]

                        U Spec, 5

 

                  20    [k e p => Set(k) & ALL(d):[d e k => d e s]]

                   & [Set(k) & ALL(d):[d e k => d e s] => k e p]

                        Iff-And, 19

 

                  21    k e p => Set(k) & ALL(d):[d e k => d e s]

                        Split, 20

 

              Sufficient: For  k e p

 

                  22    Set(k) & ALL(d):[d e k => d e s] => k e p

                        Split, 20

 

                  

                   Prove k is a subset of s

                  

                   Suppose...

 

                        23    x e k

                              Premise

 

                   Apply definition of k

 

                        24    x e k <=> x e s & ~x e f(x)

                              U Spec, 18

 

                        25    [x e k => x e s & ~x e f(x)]

                        & [x e s & ~x e f(x) => x e k]

                              Iff-And, 24

 

                        26    x e k => x e s & ~x e f(x)

                                              Split, 25

 

                        27    x e s & ~x e f(x) => x e k

                              Split, 25

 

                        28    x e s & ~x e f(x)

                              Detach, 26, 23

 

                        29    x e s

                              Split, 28

 

              As Required:

 

                  30    ALL(d):[d e k => d e s]

                        4 Conclusion, 23

 

                  31    Set(k) & ALL(d):[d e k => d e s]

                        Join, 17, 30

 

              As Required:

 

                  32    k e p

                        Detach, 22, 31

 

              Find pre-image of k under f.

             

              Apply surjectivity of f.

 

                  33    k e p => EXIST(d):[d e s & f(d)=k]

                        U Spec, 14

 

                  34    EXIST(d):[d e s & f(d)=k]

                        Detach, 33, 32

 

                  35    k' e s & f(k')=k

                        E Spec, 34

 

             

              Define: k'  (the pre-image of k under f)

 

                  36    k' e s

                        Split, 35

 

                  37    f(k')=k

                        Split, 35

 

              Determine whether k' e k.

             

              Apply definition of k.

 

                  38    k' e k <=> k' e s & ~k' e f(k')

                        U Spec, 18

 

                  39    k' e k <=> k' e s & ~k' e k

                        Substitute, 37, 38

 

                  40    [k' e k => k' e s & ~k' e k]

                   & [k' e s & ~k' e k => k' e k]

                        Iff-And, 39

 

                  41    k' e k => k' e s & ~k' e k

                        Split, 40

 

                  42    k' e s & ~k' e k => k' e k

                        Split, 40

 

                  

                   Prove: ~k' e k

                  

                   Suppose to the contrary...

 

                        43    k' e k

                              Premise

 

                        44    k' e s & ~k' e k

                              Detach, 41, 43

 

                        45    k' e s

                              Split, 44

 

                        46    ~k' e k

                              Split, 44

 

                        47    k' e k & ~k' e k

                              Join, 43, 46

 

              As Required:

 

                  48    ~k' e k

                        4 Conclusion, 43

 

              Prove: k' e k  (to obtain a contradiction)

 

                  49    k' e s & ~k' e k

                        Join, 36, 48

 

                  50    k' e k

                        Detach, 42, 49

 

              We have the contradiction...

 

                  51    k' e k & ~k' e k

                        Join, 50, 48

 

          As Required:

 

            52    ~Surjection(f,s,p)

                  4 Conclusion, 7

 

     As Required:

 

      53    ALL(f):[ALL(a):[a e s => f(a) e p] => ~Surjection(f,s,p)]

            4 Conclusion, 6

 

As Required:

 

54    ALL(s):ALL(p):[Set(s)

     & Set(p)

     & ALL(c):[c e p <=> Set(c) & ALL(d):[d e c => d e s]]

     => ALL(f):[ALL(a):[a e s => f(a) e p] => ~Surjection(f,s,p)]]

      4 Conclusion, 2