THEOREM

*******

 

    [A => B] <=> ~[A & ~B]

 

PROOF

*****

 

    '=>'

 

Suppose...

 

      1     A => B

            Premise

 

         Suppose to the contrary...

 

            2     A & ~B

                  Premise

 

            3     A

                  Split, 2

 

            4     ~B

                  Split, 2

 

         Apply Detachment Rule

 

            5     B

                  Detach, 1, 3

 

         Obtain the contradiction...

 

            6     B & ~B

                  Join, 5, 4

 

    Apply Conclusion Rule (By Contradiction)

 

      7     ~[A & ~B]

            4 Conclusion, 2

 

'=>'

 

Apply Conclusion Rule (Direct Proof)

 

8     A => B => ~[A & ~B]

      4 Conclusion, 1

 

   

'<='

 

Suppose...

 

      9     ~[A & ~B]

            Premise

 

         Suppose...

 

            10   A

                  Premise

 

            

             Suppose to the contrary...

 

                  11   ~B

                        Premise

 

                  12   A & ~B

                        Join, 10, 11

 

             Obtain the contradiction...

 

                  13   A & ~B & ~[A & ~B]

                        Join, 12, 9

 

         Apply Conclusion Rule (By Contradiction)

 

            14   ~~B

                  4 Conclusion, 11

 

            15   B

                  Rem DNeg, 14

 

    Apply Conclusion Rule (Direct Proof)

 

      16   A => B

            4 Conclusion, 10

 

'<='

 

Apply Conclusion Rule (Direct Proof)

 

17   ~[A & ~B] => [A => B]

      4 Conclusion, 9

 

18   [A => B => ~[A & ~B]] & [~[A & ~B] => [A => B]]

      Join, 8, 17

 

 

As Required:

 

19   A => B <=> ~[A & ~B]

      Iff-And, 18

 

 

Home