Introduction                      <------  User Comment (blue)

------------

 

We want to "prove" that no dolphins are fish.

 

We make the following assumptions:

 

(a) No fish are mammals.

 

(b) All dolphins are mammals.

 

 

Logical Symbols

---------------

 

Fish(x)    means "x is a fish"

 

Mammal(x)  means "x is a mammal"

 

Dolphin(x) means "x is a dolphin"

 

ALL(x):    means "for all x, we have..."

 

=>         means "implies"

 

~          means "not"

 

 

Proof

-----

 

 

Suppose that all fish are not mammals.

 

1     ALL(a):[Fish(a) => ~Mammal(a)]    <------   Line#, Statement  (black)

      Premise                                    <------   Rule                          (gray)

 

 

Suppose further that all dolphins are mammals.

 

2     ALL(a):[Dolphin(a) => Mammal(a)]

      Premise

 

    

     Now, prove that is x is a dolphin then x is not a fish.

    

     Suppose that x is a dolphin.

 

      3     Dolphin(x)                   <------ Free variable (red or green)

 

            Premise

 

     From our second assumption, we have...

 

      4     Dolphin(x) => Mammal(x)

            U Spec, 2

 

     Therefore, x is a mammal.

 

      5     Mammal(x)

            Detach, 4, 3

 

     From our second premise, we have...

 

      6     Fish(x) => ~Mammal(x)

            U Spec, 1

 

     Obtain the contrapositive...

 

      7     ~~Mammal(x) => ~Fish(x)

            Contra, 6

 

     Remove the double negation...

 

      8     Mammal(x) => ~Fish(x)

            Rem DNeg, 7

 

     Therefore x is not a fish.

 

      9     ~Fish(x)

            Detach, 8, 5

 

As Required, if x is a dolphin, then x is not a fish.

 

10    Dolphin(x) => ~Fish(x)             <-------- Universal generalization

      4 Conclusion, 3                                          possible for green variables,

                                                                not for red variables.

 

Generalizing, all dolphins are not fish.

 

11    ALL(a):[Dolphin(a) => ~Fish(a)]    <-------- Universal generalization

      U Gen, 10