THEOREM 1
*********
For every set x, there exists
an empty subset of x.
This machine-verified formal
proof was written with the aid of the author's DC Proof 2.0 available at http://www.dcproof.com
PROOF
*****
Suppose x is a set
1 Set(x)
Premise
Apply Subset Axiom
2 EXIST(sub):[Set(sub) & ALL(a):[a e sub <=> a e x & ~a=a]]
Subset, 1
3 Set(null) & ALL(a):[a e null <=> a e x & ~a=a]
E Spec, 2
Define: null
4 Set(null)
Split, 3
5 ALL(a):[a e null <=> a e x & ~a=a]
Split, 3
Prove: null is a subset of x
Suppose...
6 y e null
Premise
Apply definition of null
7 y e null <=> y e x & ~y=y
U Spec, 5
8 [y e null => y e x & ~y=y] & [y e x & ~y=y => y e null]
Iff-And, 7
9 y e null => y e x & ~y=y
Split, 8
10 y e x & ~y=y => y e null
Split, 8
11 y e x & ~y=y
Detach, 9, 6
12 y e x
Split, 11
null is a subset of x
As Required:
13 ALL(b):[b e null => b e x]
4 Conclusion, 6
Prove: ~EXIST(b):b e null
Suppose to the contrary...
14 y e null
Premise
Apply definition of null
15 y e null <=> y e x & ~y=y
U Spec, 5
16 [y e null => y e x & ~y=y] & [y e x & ~y=y => y e null]
Iff-And, 15
17 y e null => y e x & ~y=y
Split, 16
18 y e x & ~y=y => y e null
Split, 16
19 y e x & ~y=y
Detach, 17, 14
20 y e x
Split, 19
21 ~y=y
Split, 19
22 y=y
Reflex
Obtain the contradiction...
23 y=y & ~y=y
Join, 22, 21
As Required:
24 ~EXIST(b):b e null
4 Conclusion, 14
25 ~~ALL(b):~b e null
Quant, 24
As Required:
26 ALL(b):~b e null
Rem DNeg, 25
Joining results...
27 Set(null) & ALL(b):[b e null => b e x]
Join, 4, 13
28 Set(null) & ALL(b):[b e null => b e x]
&
ALL(b):~b e null
Join, 27, 26
As Required:
29 ALL(a):[Set(a)
=>
EXIST(null):[Set(null) & ALL(b):[b e null => b e a]
&
ALL(b):~b e null]]
4 Conclusion, 1