THEOREM 2

*********

 

All empty sets are equal.

 

 

This machine-verified formal proof was written with the aid of the author's DC Proof 2.0 available at http://www.dcproof.com

 

   

    PROOF

    *****

   

    Suppose null and null' are empty sets

 

      1     Set(null) & ALL(a):~a e null

         & Set(null') & ALL(a):~a e null'

            Premise

 

      2     Set(null)

            Split, 1

 

      3     ALL(a):~a e null

            Split, 1

 

      4     Set(null')

            Split, 1

 

      5     ALL(a):~a e null'

            Split, 1

 

    Apply Axiom of Set Equality

 

      6     ALL(a):ALL(b):[Set(a) & Set(b) => [a=b <=> ALL(c):[c e a <=> c e b]]]

            Set Equality

 

      7     ALL(b):[Set(null) & Set(b) => [null=b <=> ALL(c):[c e null <=> c e b]]]

            U Spec, 6

 

      8     Set(null) & Set(null') => [null=null' <=> ALL(c):[c e null <=> c e null']]

            U Spec, 7

 

      9     Set(null) & Set(null')

            Join, 2, 4

 

      10   null=null' <=> ALL(c):[c e null <=> c e null']

            Detach, 8, 9

 

      11   [null=null' => ALL(c):[c e null <=> c e null']]

         & [ALL(c):[c e null <=> c e null'] => null=null']

            Iff-And, 10

 

      12   null=null' => ALL(c):[c e null <=> c e null']

            Split, 11

 

    Sufficient: For null = null'

 

      13   ALL(c):[c e null <=> c e null'] => null=null'

            Split, 11

 

        

         '=>'

        

         Prove: ALL(c):[c e null => c e null']

        

         Suppose...

 

            14   x e null

                  Premise

 

            15   ~x e null

                  U Spec, 3

 

            16   ~x e null => x e null'

                  Arb Cons, 14

 

            17   x e null'

                  Detach, 16, 15

 

    As Required:

 

      18   ALL(c):[c e null => c e null']

            4 Conclusion, 14

 

        

         '<='

        

         Prove: ALL(c):[c e null' => c e null]

        

         Suppose...

 

            19   x e null'

                  Premise

 

            20   ~x e null'

                  U Spec, 5

 

            21   ~x e null' => x e null

                  Arb Cons, 19

 

            22   x e null

                  Detach, 21, 20

 

    As Required:

 

      23   ALL(c):[c e null' => c e null]

            4 Conclusion, 19

 

    Joining results...

 

      24   ALL(c):[[c e null => c e null'] & [c e null' => c e null]]

            Join, 18, 23

 

      25   ALL(c):[c e null <=> c e null']

            Iff-And, 24

 

      26   null=null'

            Detach, 13, 25

 

As Required:

 

27   ALL(null):ALL(null'):[Set(null) & ALL(a):~a e null

    & Set(null') & ALL(a):~a e null'

    => null=null']

      4 Conclusion, 1