THEOREM 3
*********
Every empty set can be
expressed as a family of sets of which there exists a union.
This machine-verified formal
proof was written with the aid of the author's DC Proof 2.0 available at http://www.dcproof.com
PROOF
*****
Suppose...
1 Set(null) & ALL(a):~a e null
Premise
2 Set(null)
Split, 1
3 ALL(a):~a e null
Split, 1
4 x e null
Premise
Apply definition of null
5 ~x e null
U Spec, 3
6 ~x e null => Set(x)
Arb Cons, 4
7 Set(x)
Detach, 6, 5
As Required:
8 ALL(a):[a e null => Set(a)]
4 Conclusion, 4
Apply Axiom of Arbitrary Union
9 ALL(f):[Set(f) & ALL(a):[a e f => Set(a)]
=>
EXIST(a):[Set(a) & ALL(b):[b e a <=> EXIST(c):[c e f & b e c]]]]
Arb Union
10 Set(null) & ALL(a):[a e null => Set(a)]
=>
EXIST(a):[Set(a) & ALL(b):[b e a <=> EXIST(c):[c e null & b e c]]]
U Spec, 9
11 Set(null) & ALL(a):[a e null => Set(a)]
Join, 2, 8
12 EXIST(a):[Set(a) & ALL(b):[b e a <=> EXIST(c):[c e null & b e c]]]
Detach, 10, 11
13 Set(unull) & ALL(b):[b e unull <=>
EXIST(c):[c e null & b e c]]
E Spec, 12
As Required:
14 EXIST(unull):[Set(unull) & ALL(b):[b e unull <=> EXIST(c):[c e null & b e c]]]
E Gen, 13
Joining results...
15 ALL(a):[a e null => Set(a)]
&
EXIST(unull):[Set(unull) & ALL(b):[b e unull <=> EXIST(c):[c e null & b e c]]]
Join, 8, 14
As Required:
16 ALL(null):[Set(null) & ALL(a):~a e null
=>
ALL(a):[a e null =>
Set(a)]
&
EXIST(unull):[Set(unull) & ALL(b):[b e unull <=> EXIST(c):[c e null & b e c]]]]
4 Conclusion, 1