Let x = {{}} Let y be the set of all elements of x not equal to {}. Is the following statement true? Az(zey -> zex) Yes. Let x be a set such aεx iff a is an empty set. 1 Set(x) & ALL(a):[a ε x <=> Set(a) & ALL(b):~b ε a] Premise 2 Set(x) Split, 1 3 ALL(a):[a ε x <=> Set(a) & ALL(b):~b ε a] Split, 1 Let y be the subset of x, all elements of which are not empty sets. 4 Set(y) & ALL(a):[a ε y <=> a ε x & ~ALL(b):~b ε a] Premise 5 Set(y) Split, 4 6 ALL(a):[a ε y <=> a ε x & ~ALL(b):~b ε a] Split, 4 Prove: For arbitrary p, ~pεy Suppose to the contrary... 7 p ε y Premise Applying the definition of y... 8 p ε y <=> p ε x & ~ALL(b):~b ε p U Spec, 6 9 [p ε y => p ε x & ~ALL(b):~b ε p] & [p ε x & ~ALL(b):~b ε p => p ε y] Iff-And, 8 10 p ε y => p ε x & ~ALL(b):~b ε p Split, 9 11 p ε x & ~ALL(b):~b ε p => p ε y Split, 9 12 p ε x & ~ALL(b):~b ε p Detach, 10, 7 From the definition of y, we have... 13 p ε x Split, 12 14 ~ALL(b):~b ε p Split, 12 Applying the defintion of x... 15 p ε x <=> Set(p) & ALL(b):~b ε p U Spec, 3 16 [p ε x => Set(p) & ALL(b):~b ε p] & [Set(p) & ALL(b):~b ε p => p ε x] Iff-And, 15 17 p ε x => Set(p) & ALL(b):~b ε p Split, 16 18 Set(p) & ALL(b):~b ε p => p ε x Split, 16 19 Set(p) & ALL(b):~b ε p Detach, 17, 13 From the definition of x, we have... 20 Set(p) Split, 19 21 ALL(b):~b ε p Split, 19 We obtain the contradiction... 22 ~ALL(b):~b ε p & ALL(b):~b ε p Join, 14, 21 As required... 23 ~p ε y Conclusion, 7 Generalizing, y is an empty set 24 ALL(a):~a ε y U Gen, 23 Prove: y is a subset of x Since y is an empty set, for arbitrary z, we have... 25 ~z ε y U Spec, 24 26 ~z ε x => ~z ε y Arb Ante, 25 27 ~~z ε y => ~~z ε x Contra, 26 28 z ε y => ~~z ε x Rem DNeg, 27 29 z ε y => z ε x Rem DNeg, 28 As Required: y is a subset of x 30 ALL(a):[a ε y => a ε x] U Gen, 29