THEOREM

*******

 

The null (empty) set is finite

 

Finite(null)

 

 

This proof was written and machine verified with the aid of the author's DC Proof 2.0 freeware available at http://www.dcproof.com

 

Dan Christensen

2019-12-09

 

 

DEFINITIONS

***********

 

Define: Finite set

 

A set X is said to be finite if and only if, for all functions f: X --> X, if f is injective (1-1) then it must be surjective.

 

1     ALL(a):[Set(a) => [Finite(a) <=> ALL(f):[ALL(b):[b e a => f(b) e a]

    => [ALL(b):ALL(c):[b e a & c e a => [f(b)=f(c) => b=c]]

    => ALL(b):[b e a => EXIST(c):[c e a & f(c)=b]]]]]]

      Axiom

 

 

Define: Null (empty) set

 

2     Set(null)

      Axiom

 

3     ALL(a):~a e null

      Axiom

 

 

PROOF

*****

 

Apply definition of Finite set for the null set

 

4     Set(null) => [Finite(null) <=> ALL(f):[ALL(b):[b e null => f(b) e null]

    => [ALL(b):ALL(c):[b e null & c e null => [f(b)=f(c) => b=c]]

    => ALL(b):[b e null => EXIST(c):[c e null & f(c)=b]]]]]

      U Spec, 1

 

5     Finite(null) <=> ALL(f):[ALL(b):[b e null => f(b) e null]

    => [ALL(b):ALL(c):[b e null & c e null => [f(b)=f(c) => b=c]]

    => ALL(b):[b e null => EXIST(c):[c e null & f(c)=b]]]]

      Detach, 4, 2

 

6     [Finite(null) => ALL(f):[ALL(b):[b e null => f(b) e null]

    => [ALL(b):ALL(c):[b e null & c e null => [f(b)=f(c) => b=c]]

    => ALL(b):[b e null => EXIST(c):[c e null & f(c)=b]]]]]

    & [ALL(f):[ALL(b):[b e null => f(b) e null]

    => [ALL(b):ALL(c):[b e null & c e null => [f(b)=f(c) => b=c]]

    => ALL(b):[b e null => EXIST(c):[c e null & f(c)=b]]]] => Finite(null)]

      Iff-And, 5

 

Sufficient: For Finite(null)

 

7     ALL(f):[ALL(b):[b e null => f(b) e null]

    => [ALL(b):ALL(c):[b e null & c e null => [f(b)=f(c) => b=c]]

    => ALL(b):[b e null => EXIST(c):[c e null & f(c)=b]]]] => Finite(null)

      Split, 6

 

    Suppose...

 

      8     ALL(b):[b e null => f(b) e null]

            Premise

 

         Suppose...

 

            9     ALL(b):ALL(c):[b e null & c e null => [f(b)=f(c) => b=c]]

                  Premise

 

             Suppose...

 

                  10   y e null

                        Premise

 

             Apply definition of null set

 

                  11   ~y e null

                        U Spec, 3

 

                  12   ~y e null => EXIST(c):[c e null & f(c)=y]

                        Arb Cons, 10

 

                  13   EXIST(c):[c e null & f(c)=y]

                        Detach, 12, 11

 

         As Required:

 

            14   ALL(b):[b e null => EXIST(c):[c e null & f(c)=b]]

                  4 Conclusion, 10

 

    As Required:

 

      15   ALL(b):ALL(c):[b e null & c e null => [f(b)=f(c) => b=c]]

         => ALL(b):[b e null => EXIST(c):[c e null & f(c)=b]]

            4 Conclusion, 9

 

As Required:

 

16   ALL(f):[ALL(b):[b e null => f(b) e null]

    => [ALL(b):ALL(c):[b e null & c e null => [f(b)=f(c) => b=c]]

    => ALL(b):[b e null => EXIST(c):[c e null & f(c)=b]]]]

      4 Conclusion, 8

 

 

As Required:

 

17   Finite(null)

      Detach, 7, 16