THEOREM
*******
The null (empty) set is finite
Finite(null)
This proof was written and
machine verified with the aid of the author's DC Proof 2.0 freeware available
at http://www.dcproof.com
Dan Christensen
2019-12-09
DEFINITIONS
***********
Define: Finite set
A set X is said to be finite if
and only if, for all functions f: X --> X, if f is injective (1-1) then it
must be surjective.
1 ALL(a):[Set(a) => [Finite(a) <=>
ALL(f):[ALL(b):[b e a => f(b) e a]
=>
[ALL(b):ALL(c):[b e a & c e a => [f(b)=f(c) => b=c]]
=>
ALL(b):[b e a =>
EXIST(c):[c e a & f(c)=b]]]]]]
Axiom
Define: Null (empty) set
2 Set(null)
Axiom
3 ALL(a):~a e null
Axiom
PROOF
*****
Apply definition of Finite set
for the null set
4 Set(null) => [Finite(null) <=>
ALL(f):[ALL(b):[b e null => f(b) e null]
=>
[ALL(b):ALL(c):[b e null & c e null => [f(b)=f(c) => b=c]]
=>
ALL(b):[b e null =>
EXIST(c):[c e null & f(c)=b]]]]]
U Spec, 1
5 Finite(null) <=>
ALL(f):[ALL(b):[b e null => f(b) e null]
=>
[ALL(b):ALL(c):[b e null & c e null => [f(b)=f(c) => b=c]]
=>
ALL(b):[b e null =>
EXIST(c):[c e null & f(c)=b]]]]
Detach, 4, 2
6 [Finite(null) => ALL(f):[ALL(b):[b e null => f(b) e null]
=>
[ALL(b):ALL(c):[b e null & c e null => [f(b)=f(c) => b=c]]
=>
ALL(b):[b e null =>
EXIST(c):[c e null & f(c)=b]]]]]
&
[ALL(f):[ALL(b):[b e null => f(b) e null]
=>
[ALL(b):ALL(c):[b e null & c e null => [f(b)=f(c) => b=c]]
=>
ALL(b):[b e null =>
EXIST(c):[c e null & f(c)=b]]]] => Finite(null)]
Iff-And, 5
Sufficient: For Finite(null)
7 ALL(f):[ALL(b):[b e null => f(b) e null]
=>
[ALL(b):ALL(c):[b e null & c e null => [f(b)=f(c) => b=c]]
=>
ALL(b):[b e null =>
EXIST(c):[c e null & f(c)=b]]]] => Finite(null)
Split, 6
Suppose...
8 ALL(b):[b e null => f(b) e null]
Premise
Suppose...
9 ALL(b):ALL(c):[b e null & c e null => [f(b)=f(c) => b=c]]
Premise
Suppose...
10 y e null
Premise
Apply definition of null set
11 ~y e null
U Spec, 3
12 ~y e null => EXIST(c):[c e null & f(c)=y]
Arb Cons, 10
13 EXIST(c):[c e null & f(c)=y]
Detach, 12, 11
As Required:
14 ALL(b):[b e null =>
EXIST(c):[c e null & f(c)=b]]
4 Conclusion, 10
As Required:
15 ALL(b):ALL(c):[b e null & c e null => [f(b)=f(c) => b=c]]
=>
ALL(b):[b e null =>
EXIST(c):[c e null & f(c)=b]]
4 Conclusion, 9
As Required:
16 ALL(f):[ALL(b):[b e null => f(b) e null]
=>
[ALL(b):ALL(c):[b e null & c e null => [f(b)=f(c) => b=c]]
=>
ALL(b):[b e null =>
EXIST(c):[c e null & f(c)=b]]]]
4 Conclusion, 8
As Required:
17 Finite(null)
Detach, 7, 16