Theorem

-------

 

The empty set is unique. All empty sets are identical.

 

ALL(e1):ALL(e2):[Set(e1) & Set(e2)

=> [~EXIST(a):a e e1 & ~EXIST(a):a e e2 => e1=e2]]

 

By Dan Christensen

http://www.dcproof.com

 

 

Proof

-----

 

     Suppose...

 

      1     Set(e1) & Set(e2)

            Premise

 

     Splitting this premise...

 

      2     Set(e1)

            Split, 1

 

      3     Set(e2)

            Split, 1

 

          Prove: ~EXIST(a):a e e1 & ~EXIST(a):a e e2 => e1=e2

         

          Suppose...

 

            4     ~EXIST(a):a e e1 & ~EXIST(a):a e e2

                  Premise

 

            5     ~EXIST(a):a e e1

                  Split, 4

 

            6     ~EXIST(a):a e e2

                  Split, 4

 

          Apply Set Equality Axiom

 

            7     ALL(a):ALL(b):[Set(a) & Set(b) => [a=b <=> ALL(c):[c e a <=> c e b]]]

                  Set Equality

 

            8     ALL(b):[Set(e1) & Set(b) => [e1=b <=> ALL(c):[c e e1 <=> c e b]]]

                  U Spec, 7

 

            9     Set(e1) & Set(e2) => [e1=e2 <=> ALL(c):[c e e1 <=> c e e2]]

                  U Spec, 8

 

            10    e1=e2 <=> ALL(c):[c e e1 <=> c e e2]

                  Detach, 9, 1

 

            11    [e1=e2 => ALL(c):[c e e1 <=> c e e2]]

              & [ALL(c):[c e e1 <=> c e e2] => e1=e2]

                  Iff-And, 10

 

            12    e1=e2 => ALL(c):[c e e1 <=> c e e2]

                  Split, 11

 

          Sufficient: For e1=e2

 

            13    ALL(c):[c e e1 <=> c e e2] => e1=e2

                  Split, 11

 

          Switch quantifiers and remove ~~

 

            14    ~~ALL(a):~a e e1

                  Quant, 5

 

            15    ALL(a):~a e e1

                  Rem DNeg, 14

 

            16    ~~ALL(a):~a e e2

                  Quant, 6

 

            17    ALL(a):~a e e2

                  Rem DNeg, 16

 

              Prove: ALL(a):[~a e e2 => ~a e e1]  (contrapositive)

 

                  18    ~x e e2

                        Premise

 

                  19    ~x e e1

                        U Spec, 15

 

          As Required:

 

            20    ALL(a):[~a e e2 => ~a e e1]

                  4 Conclusion, 18

 

          Apply Contrapositive Rule and remove ~~

 

            21    ALL(a):[~~a e e1 => ~~a e e2]

                  Contra, 20

 

            22    ALL(a):[a e e1 => ~~a e e2]

                  Rem DNeg, 21

 

          '=>'

         

          As Required:

 

            23    ALL(a):[a e e1 => a e e2]

                  Rem DNeg, 22

 

              Prove: ALL(a):[~a e e1 => ~a e e2]  (contrapositive)

             

              Suppose...

 

                  24    ~x e e1

                        Premise

 

                  25    ~x e e2

                        U Spec, 17

 

          As Required:

 

            26    ALL(a):[~a e e1 => ~a e e2]

                  4 Conclusion, 24

 

          Apply the Contrapositive Rule and remove ~~

 

            27    ALL(a):[~~a e e2 => ~~a e e1]

                  Contra, 26

 

            28    ALL(a):[a e e2 => ~~a e e1]

                  Rem DNeg, 27

 

          '<='

         

          As Required:

 

            29    ALL(a):[a e e2 => a e e1]

                  Rem DNeg, 28

 

          Apply Join Rule using single quantifier option

 

            30    ALL(a):[[a e e1 => a e e2] & [a e e2 => a e e1]]

                  Join, 23, 29

 

            31    ALL(a):[a e e1 <=> a e e2]

                  Iff-And, 30

 

            32    e1=e2

                  Detach, 13, 31

 

     As Required:

 

      33    ~EXIST(a):a e e1 & ~EXIST(a):a e e2 => e1=e2

            4 Conclusion, 4

 

As Required:

 

34    ALL(e1):ALL(e2):[Set(e1) & Set(e2)

     => [~EXIST(a):a e e1 & ~EXIST(a):a e e2 => e1=e2]]

      4 Conclusion, 1