THEOREM

-------

 

For every set s there exists an empty subset of s

 

     ALL(s):[Set(s)

     => EXIST(null):[Set(null) & ALL(a):[a e null => a e s]

     & ~EXIST(a):a e null]]

 

 

This formal proof was prepared with the use of the author's DC Proof 2.0 software

available at http://www.dcproof.com

 

    

     PROOF

     -----

    

     Let s be a set

 

      1     Set(s)

            Premise

 

     Apply the Subset Axiom (similar to Specification in ZF)

    

     Select a subset of s using selection criteria that cannot be met (that the elements

     are not equal to themselves)

 

      2     EXIST(a):[Set(a) & ALL(b):[b e a <=> b e s & ~b=b]]

            Subset, 1

 

     Define: the null set

 

      3     Set(null) & ALL(b):[b e null <=> b e s & ~b=b]

            E Spec, 2

 

     Splitting this definition into it component parts...

 

      4     Set(null)

            Split, 3

 

      5     ALL(b):[b e null <=> b e s & ~b=b]

            Split, 3

 

          Show that null is empty

         

          Prove: ~EXIST(a):a e null

         

          Suppose to the contrary...

 

            6     x e null

                  Premise

 

          Apply the definition of null

 

            7     x e null <=> x e s & ~x=x

                  U Spec, 5

 

            8     [x e null => x e s & ~x=x] & [x e s & ~x=x => x e null]

                  Iff-And, 7

 

            9     x e null => x e s & ~x=x

                  Split, 8

 

            10    x e s & ~x=x => x e null

                  Split, 8

 

            11    x e s & ~x=x

                  Detach, 9, 6

 

            12    x e s

                  Split, 11

 

            13    ~x=x

                  Split, 11

 

            14    x=x

                  Reflex

 

          Obtain the contradiction...

 

            15    x=x & ~x=x

                  Join, 14, 13

 

     null is empty

    

     As Required:

 

      16    ~EXIST(a):a e null

            4 Conclusion, 6

 

     Joining previous results...

 

      17    Set(null) & ~EXIST(a):a e null

            Join, 4, 16

 

         

          Prove: null is a subset of s

         

          Suppose...

 

            18    y e null

                  Premise

 

          Apply the definition of null

 

            19    y e null <=> y e s & ~y=y

                  U Spec, 5

 

            20    [y e null => y e s & ~y=y] & [y e s & ~y=y => y e null]

                  Iff-And, 19

 

            21    y e null => y e s & ~y=y

                  Split, 20

 

            22    y e s & ~y=y => y e null

                  Split, 20

 

            23    y e s & ~y=y

                  Detach, 21, 18

 

            24    y e s

                  Split, 23

 

     null is a subset of s

    

     As Required:

 

      25    ALL(a):[a e null => a e s]

            4 Conclusion, 18

 

      26    Set(null) & ALL(a):[a e null => a e s]

            Join, 4, 25

 

      27    Set(null) & ALL(a):[a e null => a e s]

          & ~EXIST(a):a e null

            Join, 26, 16

 

As Required:

 

28    ALL(s):[Set(s)

     => EXIST(null):[Set(null) & ALL(a):[a e null => a e s]

     & ~EXIST(a):a e null]]

      4 Conclusion, 1