Here we resolve the existential fallacy:

    

     All A are B

     ------------

     Some A is B

    

     In set theoretic notation...

    

     Prove: ALL(u):ALL(pu):[Set(u)

            & Set(pu)

            & ALL(a):[a e pu <=> Set(a) & ALL(b):[b e a => b e u]]

            => ~ALL(a):ALL(b):[a e pu & b e pu => [ALL(c):[c e a => c e b] => EXIST(c):[c e a & c e b]]]]

    

     We construct a counter-example with A and B being the null set.

 

     (This proof was constructed with the aid of DC Proof 2.0. Download at http://www.dcproof.com )

    

     Let pu be the power set of u

 

      1     Set(u)

          & Set(pu)

          & ALL(a):[a e pu <=> Set(a) & ALL(b):[b e a => b e u]]

            Premise

 

     Splitting this premise...

 

      2     Set(u)

            Split, 1

 

      3     Set(pu)

            Split, 1

 

      4     ALL(a):[a e pu <=> Set(a) & ALL(b):[b e a => b e u]]

            Split, 1

 

     Construct an empty subset of u

 

      5     EXIST(sub):[Set(sub) & ALL(a):[a e sub <=> a e u & ~a=a]]

            Subset, 2

 

      6     Set(null) & ALL(a):[a e null <=> a e u & ~a=a]

            E Spec, 5

 

     Define: null, an empty subset of u

 

      7     Set(null)

            Split, 6

 

      8     ALL(a):[a e null <=> a e u & ~a=a]

            Split, 6

 

     Prove: null e pu

    

     Apply definition of pu

 

      9     null e pu <=> Set(null) & ALL(b):[b e null => b e u]

            U Spec, 4

 

      10    [null e pu => Set(null) & ALL(b):[b e null => b e u]]

          & [Set(null) & ALL(b):[b e null => b e u] => null e pu]

            Iff-And, 9

 

      11    null e pu => Set(null) & ALL(b):[b e null => b e u]

            Split, 10

 

     Sufficient: null e pu

 

      12    Set(null) & ALL(b):[b e null => b e u] => null e pu

            Split, 10

 

         

          Prove: ALL(b):[b e null => b e u]

         

          Suppose...

 

            13    x e null

                  Premise

 

          Apply definition of null

 

            14    x e null <=> x e u & ~x=x

                  U Spec, 8

 

            15    [x e null => x e u & ~x=x] & [x e u & ~x=x => x e null]

                  Iff-And, 14

 

            16    x e null => x e u & ~x=x

                  Split, 15

 

            17    x e u & ~x=x => x e null

                  Split, 15

 

            18    x e u & ~x=x

                  Detach, 16, 13

 

            19    x e u

                  Split, 18

 

     As Required:

 

      20    ALL(b):[b e null => b e u]

            4 Conclusion, 13

 

     Joining results...

 

      21    Set(null) & ALL(b):[b e null => b e u]

            Join, 7, 20

 

     As Required:

 

      22    null e pu

            Detach, 12, 21

 

         

          Prove: ALL(c):[c e null => c e null]

         

          Suppose...

 

            23    x e null

                  Premise

 

     As Required:

 

      24    ALL(c):[c e null => c e null]

            4 Conclusion, 23

 

         

          Prove: ~EXIST(a):a e null

         

          Suppose to the contrary...

 

            25    x e null

                  Premise

 

          Apply definition of null

 

            26    x e null <=> x e u & ~x=x

                  U Spec, 8

 

            27    [x e null => x e u & ~x=x] & [x e u & ~x=x => x e null]

                  Iff-And, 26

 

            28    x e null => x e u & ~x=x

                  Split, 27

 

            29    x e u & ~x=x => x e null

                  Split, 27

 

            30    x e u & ~x=x

                  Detach, 28, 25

 

            31    x e u

                  Split, 30

 

            32    ~x=x

                  Split, 30

 

          Apply reflexivity of =

 

            33    x=x

                  Reflex

 

            34    x=x & ~x=x

                  Join, 33, 32

 

     As Required:

    

     null has no elements

 

      35    ~EXIST(a):a e null

            4 Conclusion, 25

 

         

          Prove: ~EXIST(c):[c e null & c e null]

         

          Suppose to the contrary...

 

            36    x e null & x e null

                  Premise

 

            37    x e null

                  Split, 36

 

            38    x e null

                  Split, 36

 

          Apply previous result

 

            39    ~~ALL(a):~a e null

                  Quant, 35

 

            40    ALL(a):~a e null

                  Rem DNeg, 39

 

            41    ~x e null

                  U Spec, 40

 

            42    x e null & ~x e null

                  Join, 38, 41

 

     As Required:

 

      43    ~EXIST(c):[c e null & c e null]

            4 Conclusion, 36

 

     Joining results...

 

      44    null e pu & null e pu

            Join, 22, 22

 

      45    ALL(c):[c e null => c e null]

          & ~EXIST(c):[c e null & c e null]

            Join, 24, 43

 

      46    null e pu & null e pu

          & [ALL(c):[c e null => c e null]

          & ~EXIST(c):[c e null & c e null]]

            Join, 44, 45

 

      47    EXIST(b):[null e pu & b e pu

          & [ALL(c):[c e null => c e b]

          & ~EXIST(c):[c e null & c e b]]]

            E Gen, 46

 

      48    EXIST(a):EXIST(b):[a e pu & b e pu

          & [ALL(c):[c e a => c e b]

          & ~EXIST(c):[c e a & c e b]]]

            E Gen, 47

 

     Change quantifiers, etc.

 

      49    ~ALL(a):~EXIST(b):[a e pu & b e pu

          & [ALL(c):[c e a => c e b]

          & ~EXIST(c):[c e a & c e b]]]

            Quant, 48

 

      50    ~ALL(a):~~ALL(b):~[a e pu & b e pu

          & [ALL(c):[c e a => c e b]

          & ~EXIST(c):[c e a & c e b]]]

            Quant, 49

 

      51    ~ALL(a):ALL(b):~[a e pu & b e pu

          & [ALL(c):[c e a => c e b]

          & ~EXIST(c):[c e a & c e b]]]

            Rem DNeg, 50

 

      52    ~ALL(a):ALL(b):~~[a e pu & b e pu => ~[ALL(c):[c e a => c e b]

          & ~EXIST(c):[c e a & c e b]]]

            Imply-And, 51

 

      53    ~ALL(a):ALL(b):[a e pu & b e pu => ~[ALL(c):[c e a => c e b]

          & ~EXIST(c):[c e a & c e b]]]

            Rem DNeg, 52

 

      54    ~ALL(a):ALL(b):[a e pu & b e pu => ~~[ALL(c):[c e a => c e b] => ~~EXIST(c):[c e a & c e b]]]

            Imply-And, 53

 

      55    ~ALL(a):ALL(b):[a e pu & b e pu => [ALL(c):[c e a => c e b] => ~~EXIST(c):[c e a & c e b]]]

            Rem DNeg, 54

 

      56    ~ALL(a):ALL(b):[a e pu & b e pu => [ALL(c):[c e a => c e b] => EXIST(c):[c e a & c e b]]]

            Rem DNeg, 55

 

As Required:

 

57    ALL(u):ALL(pu):[Set(u)

     & Set(pu)

     & ALL(a):[a e pu <=> Set(a) & ALL(b):[b e a => b e u]]

     => ~ALL(a):ALL(b):[a e pu & b e pu => [ALL(c):[c e a => c e b] => EXIST(c):[c e a & c e b]]]]

      4 Conclusion, 1