THEOREM

*******

 

The union of the set of all fison's is the set of natural numbers.

  

   ufisons=n

 

where

 

   n       = the set of natural numbers

   <=      = partial ordering on n

   fisons  = set of all FISON's          =   {{0}, {0,1}, {0,1,2}, ... }

   ufisons = union of fisons             = U {{0}, {0,1}, {0,1,2}, ... }

 

 

OUTLINE OF PROOF

****************

 

Lines

 

7-21   Construct ufisons:  ALL(b):[b e ufisons <=> EXIST(c):[c e fisons & b e c]]

 

22-29  Determine sufficient conditions for equality:  ALL(c):[c e ufisons <=> c e n] => ufisons=n

 

30-49  Prove:  ALL(c):[c e ufisons => c e n]

 

50-108 Prove:  ALL(c):[c e n => c e ufisons]

 

 

This machine-verified formal proof was written with the aid of the author’s DC Proof 2.0 proof-checking software available at http://www.dcproof.com    

 

 

AXIOMS

******

 

1     Set(n)

      Axiom

 

 

Define: <= on n

 

2     ALL(a):[a e n => a<=a]

      Axiom

 

3     ALL(a):ALL(b):[a e n & b e n => [a<=b & b<=a => a=b]]

      Axiom

 

Define: fisons    (See formal construction here, lines 5-52)

 

4     Set(fisons)

    & ALL(a):[a e fisons

    <=> Set(a) & ALL(b):[b e a => b e n]

    & EXIST(b):[b e n & ALL(c):[c e n => [c e a <=> c<=b]]]]

      Axiom

 

5     Set(fisons)

      Split, 4

 

6     ALL(a):[a e fisons

    <=> Set(a) & ALL(b):[b e a => b e n]

    & EXIST(b):[b e n & ALL(c):[c e n => [c e a <=> c<=b]]]]

      Split, 4

 

 

PROOF

*****

 

Apply Axiom of Arbitrary Union

 

7     ALL(f):[Set(f) & ALL(a):[a e f => Set(a)]

    => EXIST(a):[Set(a) & ALL(b):[b e a <=> EXIST(c):[c e f & b e c]]]]

      Arb Union

 

8     Set(fisons) & ALL(a):[a e fisons => Set(a)]

    => EXIST(a):[Set(a) & ALL(b):[b e a <=> EXIST(c):[c e fisons & b e c]]]

      U Spec, 7

 

   

    Prove: ALL(a):[a e fisons => Set(a)]

   

    Suppose...

 

      9     x e fisons

            Premise

 

    Apply defintion of fisons

 

      10   x e fisons

         <=> Set(x) & ALL(b):[b e x => b e n]

         & EXIST(b):[b e n & ALL(c):[c e n => [c e x <=> c<=b]]]

            U Spec, 6

 

      11   [x e fisons => Set(x) & ALL(b):[b e x => b e n]

         & EXIST(b):[b e n & ALL(c):[c e n => [c e x <=> c<=b]]]]

         & [Set(x) & ALL(b):[b e x => b e n]

         & EXIST(b):[b e n & ALL(c):[c e n => [c e x <=> c<=b]]] => x e fisons]

            Iff-And, 10

 

      12   x e fisons => Set(x) & ALL(b):[b e x => b e n]

         & EXIST(b):[b e n & ALL(c):[c e n => [c e x <=> c<=b]]]

            Split, 11

 

      13   Set(x) & ALL(b):[b e x => b e n]

         & EXIST(b):[b e n & ALL(c):[c e n => [c e x <=> c<=b]]] => x e fisons

            Split, 11

 

      14   Set(x) & ALL(b):[b e x => b e n]

         & EXIST(b):[b e n & ALL(c):[c e n => [c e x <=> c<=b]]]

            Detach, 12, 9

 

      15   Set(x)

            Split, 14

 

As Required:

 

16   ALL(a):[a e fisons => Set(a)]

      4 Conclusion, 9

 

17   Set(fisons) & ALL(a):[a e fisons => Set(a)]

      Join, 5, 16

 

18   EXIST(a):[Set(a) & ALL(b):[b e a <=> EXIST(c):[c e fisons & b e c]]]

      Detach, 8, 17

 

Define: ufisons

 

19   Set(ufisons) & ALL(b):[b e ufisons <=> EXIST(c):[c e fisons & b e c]]

      E Spec, 18

 

20   Set(ufisons)

      Split, 19

 

21   ALL(b):[b e ufisons <=> EXIST(c):[c e fisons & b e c]]

      Split, 19

 

Apply Axiom of Set Equality

 

22   ALL(a):ALL(b):[Set(a) & Set(b) => [a=b <=> ALL(c):[c e a <=> c e b]]]

      Set Equality

 

23   ALL(b):[Set(ufisons) & Set(b) => [ufisons=b <=> ALL(c):[c e ufisons <=> c e b]]]

      U Spec, 22

 

24   Set(ufisons) & Set(n) => [ufisons=n <=> ALL(c):[c e ufisons <=> c e n]]

      U Spec, 23

 

25   Set(ufisons) & Set(n)

      Join, 20, 1

 

26   ufisons=n <=> ALL(c):[c e ufisons <=> c e n]

      Detach, 24, 25

 

27   [ufisons=n => ALL(c):[c e ufisons <=> c e n]]

    & [ALL(c):[c e ufisons <=> c e n] => ufisons=n]

      Iff-And, 26

 

28   ufisons=n => ALL(c):[c e ufisons <=> c e n]

      Split, 27

 

Sufficient: For ufisons=n

 

29   ALL(c):[c e ufisons <=> c e n] => ufisons=n

      Split, 27

 

   

    Prove: ALL(c):[c e ufisons => c e n]

   

    Suppose...

 

      30   x e ufisons

            Premise

 

    Apply definition of ufisons

 

      31   x e ufisons <=> EXIST(c):[c e fisons & x e c]

            U Spec, 21

 

      32   [x e ufisons => EXIST(c):[c e fisons & x e c]]

         & [EXIST(c):[c e fisons & x e c] => x e ufisons]

            Iff-And, 31

 

      33   x e ufisons => EXIST(c):[c e fisons & x e c]

            Split, 32

 

      34   EXIST(c):[c e fisons & x e c] => x e ufisons

            Split, 32

 

      35   EXIST(c):[c e fisons & x e c]

            Detach, 33, 30

 

    Define: y

 

      36   y e fisons & x e y

            E Spec, 35

 

      37   y e fisons

            Split, 36

 

      38   x e y

            Split, 36

 

    Apply definition of fisons

 

      39   y e fisons

         <=> Set(y) & ALL(b):[b e y => b e n]

         & EXIST(b):[b e n & ALL(c):[c e n => [c e y <=> c<=b]]]

            U Spec, 6

 

      40   [y e fisons => Set(y) & ALL(b):[b e y => b e n]

         & EXIST(b):[b e n & ALL(c):[c e n => [c e y <=> c<=b]]]]

         & [Set(y) & ALL(b):[b e y => b e n]

         & EXIST(b):[b e n & ALL(c):[c e n => [c e y <=> c<=b]]] => y e fisons]

            Iff-And, 39

 

      41   y e fisons => Set(y) & ALL(b):[b e y => b e n]

         & EXIST(b):[b e n & ALL(c):[c e n => [c e y <=> c<=b]]]

            Split, 40

 

      42   Set(y) & ALL(b):[b e y => b e n]

         & EXIST(b):[b e n & ALL(c):[c e n => [c e y <=> c<=b]]] => y e fisons

            Split, 40

 

      43   Set(y) & ALL(b):[b e y => b e n]

         & EXIST(b):[b e n & ALL(c):[c e n => [c e y <=> c<=b]]]

            Detach, 41, 37

 

      44   Set(y)

            Split, 43

 

      45   ALL(b):[b e y => b e n]

            Split, 43

 

      46   EXIST(b):[b e n & ALL(c):[c e n => [c e y <=> c<=b]]]

            Split, 43

 

      47   x e y => x e n

            U Spec, 45

 

      48   x e n

            Detach, 47, 38

 

As Required:

 

49   ALL(c):[c e ufisons => c e n]

      4 Conclusion, 30

 

   

    Prove: ALL(c):[c e n => c e ufisons]

   

    Suppose...

 

      50   x e n

            Premise

 

    Apply definition of ufisons

 

      51   x e ufisons <=> EXIST(c):[c e fisons & x e c]

            U Spec, 21

 

      52   [x e ufisons => EXIST(c):[c e fisons & x e c]]

         & [EXIST(c):[c e fisons & x e c] => x e ufisons]

            Iff-And, 51

 

      53   x e ufisons => EXIST(c):[c e fisons & x e c]

            Split, 52

 

    Sufficient: For x e ufisons

 

      54   EXIST(c):[c e fisons & x e c] => x e ufisons

            Split, 52

 

    Apply Subset Axiom

 

      55   EXIST(sub):[Set(sub) & ALL(a):[a e sub <=> a e n & a<=x]]

            Subset, 1

 

    Define: y

 

      56   Set(y) & ALL(a):[a e y <=> a e n & a<=x]

            E Spec, 55

 

      57   Set(y)

            Split, 56

 

      58   ALL(a):[a e y <=> a e n & a<=x]

            Split, 56

 

    Apply definition of fisons

 

      59   y e fisons

         <=> Set(y) & ALL(b):[b e y => b e n]

         & EXIST(b):[b e n & ALL(c):[c e n => [c e y <=> c<=b]]]

            U Spec, 6

 

      60   [y e fisons => Set(y) & ALL(b):[b e y => b e n]

         & EXIST(b):[b e n & ALL(c):[c e n => [c e y <=> c<=b]]]]

         & [Set(y) & ALL(b):[b e y => b e n]

         & EXIST(b):[b e n & ALL(c):[c e n => [c e y <=> c<=b]]] => y e fisons]

            Iff-And, 59

 

      61   y e fisons => Set(y) & ALL(b):[b e y => b e n]

         & EXIST(b):[b e n & ALL(c):[c e n => [c e y <=> c<=b]]]

            Split, 60

 

    Sufficient: For y e fisons

 

      62   Set(y) & ALL(b):[b e y => b e n]

         & EXIST(b):[b e n & ALL(c):[c e n => [c e y <=> c<=b]]] => y e fisons

            Split, 60

 

        

         Prove: ALL(b):[b e y => b e n]

        

         Suppose...

 

            63   z e y

                  Premise

 

            64   z e y <=> z e n & z<=x

                  U Spec, 58

 

            65   [z e y => z e n & z<=x] & [z e n & z<=x => z e y]

                  Iff-And, 64

 

            66   z e y => z e n & z<=x

                  Split, 65

 

            67   z e n & z<=x => z e y

                  Split, 65

 

            68   z e n & z<=x

                  Detach, 66, 63

 

            69   z e n

                  Split, 68

 

    As Required:

 

      70   ALL(b):[b e y => b e n]

            4 Conclusion, 63

 

        

         Prove: ALL(c):[c e n => [c e y <=> c<=x]]

        

         Suppose...

 

            71   z e n

                  Premise

 

            

             Prove: z e y => z<=x

            

             Suppose...

 

                  72   z e y

                        Premise

 

             Apply definition of y

 

                  73   z e y <=> z e n & z<=x

                        U Spec, 58

 

                  74   [z e y => z e n & z<=x] & [z e n & z<=x => z e y]

                        Iff-And, 73

 

                  75   z e y => z e n & z<=x

                        Split, 74

 

                  76   z e n & z<=x => z e y

                        Split, 74

 

                  77   z e n & z<=x

                        Detach, 75, 72

 

                  78   z e n

                        Split, 77

 

                  79   z<=x

                        Split, 77

 

         As Required:

 

            80   z e y => z<=x

                  4 Conclusion, 72

 

            

             Prove: z<=x => z e y

            

             Suppose...

 

                  81   z<=x

                        Premise

 

                  82   z e y <=> z e n & z<=x

                        U Spec, 58

 

                  83   [z e y => z e n & z<=x] & [z e n & z<=x => z e y]

                        Iff-And, 82

 

                  84   z e y => z e n & z<=x

                        Split, 83

 

                  85   z e n & z<=x => z e y

                        Split, 83

 

                  86   z e n & z<=x

                        Join, 71, 81

 

                  87   z e y

                        Detach, 85, 86

 

         As Required:

 

            88   z<=x => z e y

                  4 Conclusion, 81

 

            89   [z e y => z<=x] & [z<=x => z e y]

                  Join, 80, 88

 

            90   z e y <=> z<=x

                  Iff-And, 89

 

    As Required:

 

      91   ALL(c):[c e n => [c e y <=> c<=x]]

            4 Conclusion, 71

 

      92   x e n & ALL(c):[c e n => [c e y <=> c<=x]]

            Join, 50, 91

 

      93   EXIST(b):[b e n & ALL(c):[c e n => [c e y <=> c<=b]]]

            E Gen, 92

 

      94   Set(y) & ALL(b):[b e y => b e n]

            Join, 57, 70

 

      95   Set(y) & ALL(b):[b e y => b e n]

         & EXIST(b):[b e n & ALL(c):[c e n => [c e y <=> c<=b]]]

            Join, 94, 93

 

      96   y e fisons

            Detach, 62, 95

 

      97   x e y <=> x e n & x<=x

            U Spec, 58

 

      98   [x e y => x e n & x<=x] & [x e n & x<=x => x e y]

            Iff-And, 97

 

      99   x e y => x e n & x<=x

            Split, 98

 

    Sufficient: For x e y

 

      100  x e n & x<=x => x e y

            Split, 98

 

      101  x e n => x<=x

            U Spec, 2

 

      102  x<=x

            Detach, 101, 50

 

      103  x e n & x<=x

            Join, 50, 102

 

      104  x e y

            Detach, 100, 103

 

      105  y e fisons & x e y

            Join, 96, 104

 

      106  EXIST(c):[c e fisons & x e c]

            E Gen, 105

 

      107  x e ufisons

            Detach, 54, 106

 

As Required:

 

108  ALL(c):[c e n => c e ufisons]

      4 Conclusion, 50

 

109  ALL(c):[[c e ufisons => c e n] & [c e n => c e ufisons]]

      Join, 49, 108

 

110  ALL(c):[c e ufisons <=> c e n]

      Iff-And, 109

 

As Required:

 

111  ufisons=n

      Detach, 29, 110