The Fallacy of the Undistributed Middle -- A Set Theoretic Approach The classical form of this fallacy: All p's are q's (Major premise) x is a q (Minor premise) ---------------- x is a p (Conclusion) Here we prove a set theoretic version of the classical argument. We begin by postulating the existence of a non-empty set q with element x. Using the Subset Axiom, we then construct a subset p of q that excludes x. Then we have: ALL(d):[d ε p => d ε q] (Major premise) & x ε q (Minor premise) & ~x ε p (The negation of the conclusion) Thus, if there exists any non-empty set at all, we can construct an instance of the major and minor premises being true and the conclusion being false. In this way the fallacy is proven. Prove: EXIST(s):EXIST(a):[Set(s) & a ε s] => EXIST(a):EXIST(b):EXIST(c):[Set(a) & Set(b) & ALL(d):[d ε a => d ε b] & c ε b & ~c ε a] Suppose there exists a non-empty set. 1 EXIST(s):EXIST(a):[Set(s) & a ε s] Premise 2 EXIST(a):[Set(q) & a ε q] E Spec, 1 Let q be a non-empty set with element x. 3 Set(q) & x ε q E Spec, 2 4 Set(q) Split, 3 We have the minor premise... 5 x ε q Split, 3 Use the Subset Rule to construct a subset of q that excludes only the element x. 6 EXIST(s):[Set(s) & ALL(a):[a ε s <=> a ε q & ~a=x]] Subset, 4 Let p be a subset of q that excludes only the element x. 7 Set(p) & ALL(a):[a ε p <=> a ε q & ~a=x] E Spec, 6 8 Set(p) Split, 7 9 ALL(a):[a ε p <=> a ε q & ~a=x] Split, 7 Prove: k ε p => k ε q Suppose... 10 k ε p Premise Apply the definition of p. 11 k ε p <=> k ε q & ~k=x U Spec, 9 12 [k ε p => k ε q & ~k=x] & [k ε q & ~k=x => k ε p] Iff-And, 11 13 k ε p => k ε q & ~k=x Split, 12 14 k ε q & ~k=x => k ε p Split, 12 15 k ε q & ~k=x Detach, 13, 10 16 k ε q Split, 15 From the definition of p... 17 k ε p => k ε q Conclusion, 10 Generalizing, we obtain the major premise... 18 ALL(d):[d ε p => d ε q] U Gen, 17 Prove: ~x ε p Suppose to the contrary... 19 x ε p Premise Apply the defintion of p. 20 x ε p <=> x ε q & ~x=x U Spec, 9 21 [x ε p => x ε q & ~x=x] & [x ε q & ~x=x => x ε p] Iff-And, 20 22 x ε p => x ε q & ~x=x Split, 21 23 x ε q & ~x=x => x ε p Split, 21 24 x ε q & ~x=x Detach, 22, 19 25 x ε q Split, 24 26 ~x=x Split, 24 27 x=x Reflex We obtain the contradiction... 28 ~x=x & x=x Join, 26, 27 By contradiction, we obtain the negation of the conclusion in the original syllogism... 29 ~x ε p Conclusion, 19 Combining results... 30 Set(p) & Set(q) Join, 8, 4 31 Set(p) & Set(q) & ALL(d):[d ε p => d ε q] Join, 30, 18 32 Set(p) & Set(q) & ALL(d):[d ε p => d ε q] & x ε q Join, 31, 5 33 Set(p) & Set(q) & ALL(d):[d ε p => d ε q] & x ε q & ~x ε p Join, 32, 29 Generalizing... 34 EXIST(c):[Set(p) & Set(q) & ALL(d):[d ε p => d ε q] & c ε q & ~c ε p] E Gen, 33 35 EXIST(b):EXIST(c):[Set(p) & Set(b) & ALL(d):[d ε p => d ε b] & c ε b & ~c ε p] E Gen, 34 36 EXIST(a):EXIST(b):EXIST(c):[Set(a) & Set(b) & ALL(d):[d ε a => d ε b] & c ε b & ~c ε a] E Gen, 35 As Required: 37 EXIST(s):EXIST(a):[Set(s) & a ε s] => EXIST(a):EXIST(b):EXIST(c):[Set(a) & Set(b) & ALL(d):[d ε a => d ε b] & c ε b & ~c ε a] Conclusion, 1