INTRODUCTION

============

 

By Dan Christensen

http://www.dcproof.com

 

Here we prove that

 

EXIST(b):[b e u & ALL(a):[a e u => P(a,b)]]  (1)

 

does not necessarily follow from

 

ALL(a):[a e u => EXIST(b):[b e u & P(a,b)]]  (2)

 

where u is the domain of quantification.

 

While, for some relations P, (1) and (2) can both be true, here we construct an example for which (1) is false and (2) is true:

 

We have the domain of quantification u = n (the set of natural numbers), and relation P such that P(a,b) iff b>a.

 

Outline

-------

 

First we list the required axioms/definitions.

 

Then we establish certain essential facts from these axioms/definitions:

 

Then we prove (2) is true: Every element of n has number greater element of n.

 

Finally, we prove (1) if false: No element of n greater than all other elements of n.

 

 

AXIOMS/DEFINITIONS

==================

 

Let the domain of quantification u be the set of natural numbers n

 

1     u=n

      Axiom

 

 

Define: P

 

P(a,b) means b>a

 

2     ALL(a):ALL(b):[a e n & b e n => [P(a,b) <=> b>a]]

      Axiom

 

 

Essential Properties of n and >

-------------------------------

 

Property 1:

 

3     ALL(a):[a e n => EXIST(b):[b e n & b>a]]

      Axiom

 

Property 2:

 

4     ALL(a):ALL(b):[a e n & b e n => [a>b => ~b>a]]

      Axiom

 

    

     PROOF

     =====

    

     Prove: ALL(a):[aen => EXIST(b): [ben & P(a,b]]

    

     Suppose...

 

      5     x e n

            Premise

 

     Apply Property 1

 

      6     x e n => EXIST(b):[b e n & b>x]

            U Spec, 3

 

      7     EXIST(b):[b e n & b>x]

            Detach, 6, 5

 

     Define: y

 

      8     y e n & y>x

            E Spec, 7

 

      9     y e n

            Split, 8

 

      10    y>x

            Split, 8

 

     Apply definition of P

 

      11    ALL(b):[x e n & b e n => [P(x,b) <=> b>x]]

            U Spec, 2

 

      12    x e n & y e n => [P(x,y) <=> y>x]

            U Spec, 11

 

      13    x e n & y e n

            Join, 5, 9

 

      14    P(x,y) <=> y>x

            Detach, 12, 13

 

      15    [P(x,y) => y>x] & [y>x => P(x,y)]

            Iff-And, 14

 

      16    P(x,y) => y>x

            Split, 15

 

      17    y>x => P(x,y)

            Split, 15

 

      18    P(x,y)

            Detach, 17, 10

 

      19    y e n & P(x,y)

            Join, 9, 18

 

As Required:

 

20    ALL(a):[a e n => EXIST(b):[b e n & P(a,b)]]

      4 Conclusion, 5

 

21    ALL(a):[a e u => EXIST(b):[b e u & P(a,b)]]

      Substitute, 1, 20

 

     Prove: ALL(b):[b e n => EXIST(a):[a e n & ~P(a,b)]]

    

     Suppose...

 

      22    y e n

            Premise

 

     Apply Property 2

 

      23    y e n => EXIST(b):[b e n & b>y]

            U Spec, 3

 

      24    EXIST(b):[b e n & b>y]

            Detach, 23, 22

 

     Define: x

 

      25    x e n & x>y

            E Spec, 24

 

      26    x e n

            Split, 25

 

      27    x>y

            Split, 25

 

     Apply definition of P

 

      28    ALL(b):[x e n & b e n => [P(x,b) <=> b>x]]

            U Spec, 2

 

      29    x e n & y e n => [P(x,y) <=> y>x]

            U Spec, 28

 

      30    x e n & y e n

            Join, 26, 22

 

      31    P(x,y) <=> y>x

            Detach, 29, 30

 

      32    [P(x,y) => y>x] & [y>x => P(x,y)]

            Iff-And, 31

 

      33    P(x,y) => y>x

            Split, 32

 

      34    y>x => P(x,y)

            Split, 32

 

     Sufficient: For ~P(x,y)

 

      35    ~y>x => ~P(x,y)

            Contra, 33

 

     Prove: ~y>x

    

     Apply Property 2

 

      36    ALL(b):[x e n & b e n => [x>b => ~b>x]]

            U Spec, 4

 

      37    x e n & y e n => [x>y => ~y>x]

            U Spec, 36

 

      38    x e n & y e n

            Join, 26, 22

 

      39    x>y => ~y>x

            Detach, 37, 38

 

     As Required:

 

      40    ~y>x

            Detach, 39, 27

 

      41    ~P(x,y)

            Detach, 35, 40

 

      42    x e n & ~P(x,y)

            Join, 26, 41

 

As Required:

 

43    ALL(b):[b e n => EXIST(a):[a e n & ~P(a,b)]]

      4 Conclusion, 22

 

Prove: ~EXIST(b):[b e u & ALL(a):[a e u => P(a,b)]

 

44    ALL(b):[b e u => EXIST(a):[a e u & ~P(a,b)]]

      Substitute, 1, 43

 

45    ~EXIST(b):~[b e u => EXIST(a):[a e u & ~P(a,b)]]

      Quant, 44

 

46    ~EXIST(b):~~[b e u & ~EXIST(a):[a e u & ~P(a,b)]]

      Imply-And, 45

 

47    ~EXIST(b):[b e u & ~EXIST(a):[a e u & ~P(a,b)]]

      Rem DNeg, 46

 

48    ~EXIST(b):[b e u & ~~ALL(a):~[a e u & ~P(a,b)]]

      Quant, 47

 

49    ~EXIST(b):[b e u & ALL(a):~[a e u & ~P(a,b)]]

      Rem DNeg, 48

 

50    ~EXIST(b):[b e u & ALL(a):~~[a e u => ~~P(a,b)]]

      Imply-And, 49

 

51    ~EXIST(b):[b e u & ALL(a):[a e u => ~~P(a,b)]]

      Rem DNeg, 50

 

As Required:

 

52    ~EXIST(b):[b e u & ALL(a):[a e u => P(a,b)]]

      Rem DNeg, 51