Group Identities Prove: For all groups (g,+) with identity 0, if x+z=x or z+x=x then z=0 Let (g,+) be an arbitary group 1 Set(g) & 0g & ALL(a):ALL(b):[ag & bg => a+bg] & ALL(a):ALL(b):ALL(c):[ag & bg & cg => a+b+c=a+(b+c)] & ALL(a):[ag => 0+a=a & a+0=a] & ALL(a):[ag => _ag] & ALL(a):[ag => a+_a=0 & _a+a=0] Premise Splitting this premise... 2 Set(g) Split, 1 3 0g Split, 1 Closure of + operator 4 ALL(a):ALL(b):[ag & bg => a+bg] Split, 1 Associativity of + 5 ALL(a):ALL(b):ALL(c):[ag & bg & cg => a+b+c=a+(b+c)] Split, 1 Identity element 0 6 ALL(a):[ag => 0+a=a & a+0=a] Split, 1 Closure of _ operator 7 ALL(a):[ag => _ag] Split, 1 Inverse operator _ 8 ALL(a):[ag => a+_a=0 & _a+a=0] Split, 1 Prove: xg & zg & [x+z=x | z+x=x] => z=0 Suppose... 9 xg & zg & [x+z=x | z+x=x] Premise 10 xg Split, 9 11 zg Split, 9 We have two cases: 12 x+z=x | z+x=x Split, 9 Case 1: Prove: x+z=x => z=0 Suppose... 13 x+z=x Premise Applying identity axiom... 14 xg => 0+x=x & x+0=x U Spec, 6 15 0+x=x & x+0=x Detach, 14, 10 16 0+x=x Split, 15 From identity axiom... 17 x+0=x Split, 15 Substituting... 18 x+z+0=x Substitute, 13, 17 Applying closure of _ ... 19 xg => _xg U Spec, 7 20 _xg Detach, 19, 10 Applying inverse axiom... 21 xg => x+_x=0 & _x+x=0 U Spec, 8 22 x+_x=0 & _x+x=0 Detach, 21, 10 23 x+_x=0 Split, 22 24 _x+x=0 Split, 22 Substituting 25 _x+(x+z+0)=0 Substitute, 18, 24 Applying associativity... 26 ALL(b):ALL(c):[_xg & bg & cg => _x+b+c=_x+(b+c)] U Spec, 5 Applying closure of +... 27 ALL(b):[xg & bg => x+bg] U Spec, 4 28 xg & zg => x+zg U Spec, 27 29 xg & zg Join, 10, 11 30 x+zg Detach, 28, 29 31 ALL(c):[_xg & x+zg & cg => _x+(x+z)+c=_x+(x+z+c)] U Spec, 26 32 _xg & x+zg & 0g => _x+(x+z)+0=_x+(x+z+0) U Spec, 31 33 _xg & x+zg Join, 20, 30 34 _xg & x+zg & 0g Join, 33, 3 35 _x+(x+z)+0=_x+(x+z+0) Detach, 32, 34 From associativity... 36 _x+(x+z)+0=0 Substitute, 35, 25 Applying identity axiom... 37 _x+(x+z)g => 0+(_x+(x+z))=_x+(x+z) & _x+(x+z)+0=_x+(x+z) U Spec, 6 38 ALL(b):[_xg & bg => _x+bg] U Spec, 4 39 _xg & x+zg => _x+(x+z)g U Spec, 38 40 _xg & x+zg Join, 20, 30 41 _x+(x+z)g Detach, 39, 40 42 0+(_x+(x+z))=_x+(x+z) & _x+(x+z)+0=_x+(x+z) Detach, 37, 41 43 0+(_x+(x+z))=_x+(x+z) Split, 42 From identity axiom... 44 _x+(x+z)+0=_x+(x+z) Split, 42 Substituting... 45 _x+(x+z)=0 Substitute, 44, 36 Applying associativity... 46 ALL(b):ALL(c):[_xg & bg & cg => _x+b+c=_x+(b+c)] U Spec, 5 47 ALL(c):[_xg & xg & cg => _x+x+c=_x+(x+c)] U Spec, 46 48 _xg & xg & zg => _x+x+z=_x+(x+z) U Spec, 47 49 _xg & xg Join, 20, 10 50 _xg & xg & zg Join, 49, 11 From associativity... 51 _x+x+z=_x+(x+z) Detach, 48, 50 Substituting... 52 _x+x+z=0 Substitute, 51, 45 Applying inverse axiom... 53 xg => x+_x=0 & _x+x=0 U Spec, 8 54 x+_x=0 & _x+x=0 Detach, 53, 10 55 x+_x=0 Split, 54 From inverse axiom... 56 _x+x=0 Split, 54 Substituting... 57 0+z=0 Substitute, 56, 52 Applying identity axiom.... 58 zg => 0+z=z & z+0=z U Spec, 6 59 0+z=z & z+0=z Detach, 58, 11 60 0+z=z Split, 59 From identity axiom... 61 z+0=z Split, 59 Substituting... 62 z=0 Substitute, 60, 57 Case 1: 63 x+z=x => z=0 Conclusion, 13 Case 2: Prove: z+x=x => z=0 Suppose... 64 z+x=x Premise 65 xg => 0+x=x & x+0=x U Spec, 6 66 0+x=x & x+0=x Detach, 65, 10 67 0+x=x Split, 66 68 x+0=x Split, 66 69 0+(z+x)=x Substitute, 64, 67 70 xg => _xg U Spec, 7 71 _xg Detach, 70, 10 72 xg => x+_x=0 & _x+x=0 U Spec, 8 73 x+_x=0 & _x+x=0 Detach, 72, 10 74 x+_x=0 Split, 73 75 _x+x=0 Split, 73 76 0+(z+x)+_x=0 Substitute, 69, 74 77 ALL(b):ALL(c):[0g & bg & cg => 0+b+c=0+(b+c)] U Spec, 5 78 ALL(c):[0g & z+xg & cg => 0+(z+x)+c=0+(z+x+c)] U Spec, 77 79 0g & z+xg & _xg => 0+(z+x)+_x=0+(z+x+_x) U Spec, 78 80 ALL(b):[zg & bg => z+bg] U Spec, 4 81 zg & xg => z+xg U Spec, 80 82 zg & xg Join, 11, 10 83 z+xg Detach, 81, 82 84 0g & z+xg Join, 3, 83 85 0g & z+xg & _xg Join, 84, 71 86 0+(z+x)+_x=0+(z+x+_x) Detach, 79, 85 87 0+(z+x+_x)=0 Substitute, 86, 76 88 z+x+_xg => 0+(z+x+_x)=z+x+_x & z+x+_x+0=z+x+_x U Spec, 6 89 ALL(b):[z+xg & bg => z+x+bg] U Spec, 4 90 z+xg & _xg => z+x+_xg U Spec, 89 91 z+xg & _xg Join, 83, 71 92 z+x+_xg Detach, 90, 91 93 0+(z+x+_x)=z+x+_x & z+x+_x+0=z+x+_x Detach, 88, 92 94 0+(z+x+_x)=z+x+_x Split, 93 95 z+x+_x+0=z+x+_x Split, 93 96 z+x+_x=0 Substitute, 94, 87 97 ALL(b):ALL(c):[zg & bg & cg => z+b+c=z+(b+c)] U Spec, 5 98 ALL(c):[zg & xg & cg => z+x+c=z+(x+c)] U Spec, 97 99 zg & xg & _xg => z+x+_x=z+(x+_x) U Spec, 98 100 zg & xg Join, 11, 10 101 zg & xg & _xg Join, 100, 71 102 z+x+_x=z+(x+_x) Detach, 99, 101 103 z+(x+_x)=0 Substitute, 102, 96 104 xg => x+_x=0 & _x+x=0 U Spec, 8 105 x+_x=0 & _x+x=0 Detach, 104, 10 106 x+_x=0 Split, 105 107 _x+x=0 Split, 105 108 z+0=0 Substitute, 106, 103 109 zg => 0+z=z & z+0=z U Spec, 6 110 0+z=z & z+0=z Detach, 109, 11 111 0+z=z Split, 110 112 z+0=z Split, 110 113 z=0 Substitute, 112, 108 Case 2: 114 z+x=x => z=0 Conclusion, 64 Applying Case Rule... 115 [x+z=x => z=0] & [z+x=x => z=0] Join, 63, 114 116 z=0 Cases, 12, 115 As Required: 117 xg & zg & [x+z=x | z+x=x] => z=0 Conclusion, 9 Generalizing... 118 ALL(z):[xg & zg & [x+z=x | z+x=x] => z=0] U Gen, 117 119 ALL(x):ALL(z):[xg & zg & [x+z=x | z+x=x] => z=0] U Gen, 118 For arbitary group (g,+)... 120 Set(g) & 0g & ALL(a):ALL(b):[ag & bg => a+bg] & ALL(a):ALL(b):ALL(c):[ag & bg & cg => a+b+c=a+(b+c)] & ALL(a):[ag => 0+a=a & a+0=a] & ALL(a):[ag => _ag] & ALL(a):[ag => a+_a=0 & _a+a=0] => ALL(x):ALL(z):[xg & zg & [x+z=x | z+x=x] => z=0] Conclusion, 1 Generalizing... 121 ALL(0):[Set(g) & 0g & ALL(a):ALL(b):[ag & bg => a+bg] & ALL(a):ALL(b):ALL(c):[ag & bg & cg => a+b+c=a+(b+c)] & ALL(a):[ag => 0+a=a & a+0=a] & ALL(a):[ag => _ag] & ALL(a):[ag => a+_a=0 & _a+a=0] => ALL(x):ALL(z):[xg & zg & [x+z=x | z+x=x] => z=0]] U Gen, 120 As Required: Generalizing... 122 ALL(g):ALL(0):[Set(g) & 0g & ALL(a):ALL(b):[ag & bg => a+bg] & ALL(a):ALL(b):ALL(c):[ag & bg & cg => a+b+c=a+(b+c)] & ALL(a):[ag => 0+a=a & a+0=a] & ALL(a):[ag => _ag] & ALL(a):[ag => a+_a=0 & _a+a=0] => ALL(x):ALL(z):[xg & zg & [x+z=x | z+x=x] => z=0]] U Gen, 121