Group Identities

Prove: For all groups (g,+) with identity 0, if x+z=x or z+x=x then z=0

	
	Let (g,+) be an arbitary group

	1	Set(g)
		& 0g
		& ALL(a):ALL(b):[ag & bg => a+bg]
		& ALL(a):ALL(b):ALL(c):[ag & bg & cg => a+b+c=a+(b+c)]
		& ALL(a):[ag => 0+a=a & a+0=a]
		& ALL(a):[ag => _ag]
		& ALL(a):[ag => a+_a=0 & _a+a=0]
		Premise

	Splitting this premise...

	2	Set(g)
		Split, 1

	3	0g
		Split, 1

	Closure of + operator

	4	ALL(a):ALL(b):[ag & bg => a+bg]
		Split, 1

	Associativity of +

	5	ALL(a):ALL(b):ALL(c):[ag & bg & cg => a+b+c=a+(b+c)]
		Split, 1

	Identity element 0

	6	ALL(a):[ag => 0+a=a & a+0=a]
		Split, 1

	Closure of _ operator

	7	ALL(a):[ag => _ag]
		Split, 1

	Inverse operator _

	8	ALL(a):[ag => a+_a=0 & _a+a=0]
		Split, 1

		
		Prove: xg & zg & [x+z=x | z+x=x] => z=0
		
		Suppose...

		9	xg & zg & [x+z=x | z+x=x]
			Premise

		10	xg
			Split, 9

		11	zg
			Split, 9

		We have two cases:

		12	x+z=x | z+x=x
			Split, 9

			
			Case 1:
			
			Prove: x+z=x => z=0
			
			Suppose...

			13	x+z=x
				Premise

			Applying identity axiom...

			14	xg => 0+x=x & x+0=x
				U Spec, 6

			15	0+x=x & x+0=x
				Detach, 14, 10

			16	0+x=x
				Split, 15

			From identity axiom...

			17	x+0=x
				Split, 15

			Substituting...

			18	x+z+0=x
				Substitute, 13, 17

			Applying closure of _ ...

			19	xg => _xg
				U Spec, 7

			20	_xg
				Detach, 19, 10

			Applying inverse axiom...

			21	xg => x+_x=0 & _x+x=0
				U Spec, 8

			22	x+_x=0 & _x+x=0
				Detach, 21, 10

			23	x+_x=0
				Split, 22

			24	_x+x=0
				Split, 22

			Substituting

			25	_x+(x+z+0)=0
				Substitute, 18, 24

			Applying associativity...

			26	ALL(b):ALL(c):[_xg & bg & cg => _x+b+c=_x+(b+c)]
				U Spec, 5

			Applying closure of +...

			27	ALL(b):[xg & bg => x+bg]
				U Spec, 4

			28	xg & zg => x+zg
				U Spec, 27

			29	xg & zg
				Join, 10, 11

			30	x+zg
				Detach, 28, 29

			31	ALL(c):[_xg & x+zg & cg => _x+(x+z)+c=_x+(x+z+c)]
				U Spec, 26

			32	_xg & x+zg & 0g => _x+(x+z)+0=_x+(x+z+0)
				U Spec, 31

			33	_xg & x+zg
				Join, 20, 30

			34	_xg & x+zg & 0g
				Join, 33, 3

			35	_x+(x+z)+0=_x+(x+z+0)
				Detach, 32, 34

			From associativity...

			36	_x+(x+z)+0=0
				Substitute, 35, 25

			Applying identity axiom...

			37	_x+(x+z)g => 0+(_x+(x+z))=_x+(x+z) & _x+(x+z)+0=_x+(x+z)
				U Spec, 6

			38	ALL(b):[_xg & bg => _x+bg]
				U Spec, 4

			39	_xg & x+zg => _x+(x+z)g
				U Spec, 38

			40	_xg & x+zg
				Join, 20, 30

			41	_x+(x+z)g
				Detach, 39, 40

			42	0+(_x+(x+z))=_x+(x+z) & _x+(x+z)+0=_x+(x+z)
				Detach, 37, 41

			43	0+(_x+(x+z))=_x+(x+z)
				Split, 42

			From identity axiom...

			44	_x+(x+z)+0=_x+(x+z)
				Split, 42

			Substituting...

			45	_x+(x+z)=0
				Substitute, 44, 36

			Applying associativity...

			46	ALL(b):ALL(c):[_xg & bg & cg => _x+b+c=_x+(b+c)]
				U Spec, 5

			47	ALL(c):[_xg & xg & cg => _x+x+c=_x+(x+c)]
				U Spec, 46

			48	_xg & xg & zg => _x+x+z=_x+(x+z)
				U Spec, 47

			49	_xg & xg
				Join, 20, 10

			50	_xg & xg & zg
				Join, 49, 11

			From associativity...

			51	_x+x+z=_x+(x+z)
				Detach, 48, 50

			Substituting...

			52	_x+x+z=0
				Substitute, 51, 45

			Applying inverse axiom...

			53	xg => x+_x=0 & _x+x=0
				U Spec, 8

			54	x+_x=0 & _x+x=0
				Detach, 53, 10

			55	x+_x=0
				Split, 54

			From inverse axiom...

			56	_x+x=0
				Split, 54

			Substituting...

			57	0+z=0
				Substitute, 56, 52

			Applying identity axiom....

			58	zg => 0+z=z & z+0=z
				U Spec, 6

			59	0+z=z & z+0=z
				Detach, 58, 11

			60	0+z=z
				Split, 59

			From identity axiom...

			61	z+0=z
				Split, 59

			Substituting...

			62	z=0
				Substitute, 60, 57

		Case 1:

		63	x+z=x => z=0
			Conclusion, 13

			
			Case 2: 
			
			Prove: z+x=x => z=0
			
			Suppose...

			64	z+x=x
				Premise

			65	xg => 0+x=x & x+0=x
				U Spec, 6

			66	0+x=x & x+0=x
				Detach, 65, 10

			67	0+x=x
				Split, 66

			68	x+0=x
				Split, 66

			69	0+(z+x)=x
				Substitute, 64, 67

			70	xg => _xg
				U Spec, 7

			71	_xg
				Detach, 70, 10

			72	xg => x+_x=0 & _x+x=0
				U Spec, 8

			73	x+_x=0 & _x+x=0
				Detach, 72, 10

			74	x+_x=0
				Split, 73

			75	_x+x=0
				Split, 73

			76	0+(z+x)+_x=0
				Substitute, 69, 74

			77	ALL(b):ALL(c):[0g & bg & cg => 0+b+c=0+(b+c)]
				U Spec, 5

			78	ALL(c):[0g & z+xg & cg => 0+(z+x)+c=0+(z+x+c)]
				U Spec, 77

			79	0g & z+xg & _xg => 0+(z+x)+_x=0+(z+x+_x)
				U Spec, 78

			80	ALL(b):[zg & bg => z+bg]
				U Spec, 4

			81	zg & xg => z+xg
				U Spec, 80

			82	zg & xg
				Join, 11, 10

			83	z+xg
				Detach, 81, 82

			84	0g & z+xg
				Join, 3, 83

			85	0g & z+xg & _xg
				Join, 84, 71

			86	0+(z+x)+_x=0+(z+x+_x)
				Detach, 79, 85

			87	0+(z+x+_x)=0
				Substitute, 86, 76

			88	z+x+_xg => 0+(z+x+_x)=z+x+_x & z+x+_x+0=z+x+_x
				U Spec, 6

			89	ALL(b):[z+xg & bg => z+x+bg]
				U Spec, 4

			90	z+xg & _xg => z+x+_xg
				U Spec, 89

			91	z+xg & _xg
				Join, 83, 71

			92	z+x+_xg
				Detach, 90, 91

			93	0+(z+x+_x)=z+x+_x & z+x+_x+0=z+x+_x
				Detach, 88, 92

			94	0+(z+x+_x)=z+x+_x
				Split, 93

			95	z+x+_x+0=z+x+_x
				Split, 93

			96	z+x+_x=0
				Substitute, 94, 87

			97	ALL(b):ALL(c):[zg & bg & cg => z+b+c=z+(b+c)]
				U Spec, 5

			98	ALL(c):[zg & xg & cg => z+x+c=z+(x+c)]
				U Spec, 97

			99	zg & xg & _xg => z+x+_x=z+(x+_x)
				U Spec, 98

			100	zg & xg
				Join, 11, 10

			101	zg & xg & _xg
				Join, 100, 71

			102	z+x+_x=z+(x+_x)
				Detach, 99, 101

			103	z+(x+_x)=0
				Substitute, 102, 96

			104	xg => x+_x=0 & _x+x=0
				U Spec, 8

			105	x+_x=0 & _x+x=0
				Detach, 104, 10

			106	x+_x=0
				Split, 105

			107	_x+x=0
				Split, 105

			108	z+0=0
				Substitute, 106, 103

			109	zg => 0+z=z & z+0=z
				U Spec, 6

			110	0+z=z & z+0=z
				Detach, 109, 11

			111	0+z=z
				Split, 110

			112	z+0=z
				Split, 110

			113	z=0
				Substitute, 112, 108

		Case 2:

		114	z+x=x => z=0
			Conclusion, 64

		Applying Case Rule...

		115	[x+z=x => z=0] & [z+x=x => z=0]
			Join, 63, 114

		116	z=0
			Cases, 12, 115

	As Required:

	117	xg & zg & [x+z=x | z+x=x] => z=0
		Conclusion, 9

	Generalizing...

	118	ALL(z):[xg & zg & [x+z=x | z+x=x] => z=0]
		U Gen, 117

	119	ALL(x):ALL(z):[xg & zg & [x+z=x | z+x=x] => z=0]
		U Gen, 118


For arbitary group (g,+)...

120	Set(g)
	& 0g
	& ALL(a):ALL(b):[ag & bg => a+bg]
	& ALL(a):ALL(b):ALL(c):[ag & bg & cg => a+b+c=a+(b+c)]
	& ALL(a):[ag => 0+a=a & a+0=a]
	& ALL(a):[ag => _ag]
	& ALL(a):[ag => a+_a=0 & _a+a=0]
	=> ALL(x):ALL(z):[xg & zg & [x+z=x | z+x=x] => z=0]
	Conclusion, 1

Generalizing...

121	ALL(0):[Set(g)
	& 0g
	& ALL(a):ALL(b):[ag & bg => a+bg]
	& ALL(a):ALL(b):ALL(c):[ag & bg & cg => a+b+c=a+(b+c)]
	& ALL(a):[ag => 0+a=a & a+0=a]
	& ALL(a):[ag => _ag]
	& ALL(a):[ag => a+_a=0 & _a+a=0]
	=> ALL(x):ALL(z):[xg & zg & [x+z=x | z+x=x] => z=0]]
	U Gen, 120

As Required:

Generalizing...

122	ALL(g):ALL(0):[Set(g)
	& 0g
	& ALL(a):ALL(b):[ag & bg => a+bg]
	& ALL(a):ALL(b):ALL(c):[ag & bg & cg => a+b+c=a+(b+c)]
	& ALL(a):[ag => 0+a=a & a+0=a]
	& ALL(a):[ag => _ag]
	& ALL(a):[ag => a+_a=0 & _a+a=0]
	=> ALL(x):ALL(z):[xg & zg & [x+z=x | z+x=x] => z=0]]
	U Gen, 121