AXIOMS
******
1 ~0=1/5
Axiom
2 ALL(x):[x e real => [1/x=5 <=> x=1/5]]
Axiom
PROOF
*****
Prove: ALL(a):[a e real => [a=0 => 1/a=5 <=> ~a=0]]
Suppose...
3 a e real
Premise
Prove: a=0 => ~[a=0 => 1/a=5]
Suppose...
4 a=0
Premise
Prove: ~[a=0 => 1/a=5]
Suppose to the contrary...
5 a=0 => 1/a=5
Premise
6 1/a=5
Detach, 5, 4
7 a e real => [1/a=5 <=> a=1/5]
U Spec, 2
8 1/a=5 <=> a=1/5
Detach, 7, 3
9 [1/a=5 => a=1/5] & [a=1/5 => 1/a=5]
Iff-And, 8
10 1/a=5 => a=1/5
Split, 9
11 a=1/5 => 1/a=5
Split, 9
12 a=1/5
Detach, 10, 6
13 0=1/5
Substitute, 4, 12
14 0=1/5 & ~0=1/5
Join, 13, 1
As Required:
15 ~[a=0 => 1/a=5]
4 Conclusion, 5
As Required:
16 a=0 => ~[a=0 => 1/a=5]
4 Conclusion, 4
17 ~~[a=0 => 1/a=5] => ~a=0
Contra, 16
18 a=0 => 1/a=5 => ~a=0
Rem DNeg, 17
Prove: ~a=0 => [a=0 => 1/a=5]
Suppose...
19 ~a=0
Premise
20 ~~a=0 => 1/a=5
Arb Cons, 19
21 a=0 => 1/a=5
Rem DNeg, 20
As Required:
22 ~a=0 => [a=0 => 1/a=5]
4 Conclusion, 19
23 [a=0 => 1/a=5 => ~a=0] & [~a=0 => [a=0 => 1/a=5]]
Join, 18, 22
24 a=0 => 1/a=5 <=> ~a=0
Iff-And, 23
As Required:
25 ALL(a):[a e real => [a=0 => 1/a=5 <=> ~a=0]]
4 Conclusion, 3