AXIOMS

******

 

1     ~0=1/5

      Axiom

 

2     ALL(x):[x e real => [1/x=5 <=> x=1/5]]

      Axiom

 

    PROOF

    *****

   

    Prove: ALL(a):[a e real => [a=0 => 1/a=5 <=> ~a=0]]

   

    Suppose...

 

      3     a e real

            Premise

 

         Prove: a=0 => ~[a=0 => 1/a=5]

        

         Suppose...

 

            4     a=0

                  Premise

 

             Prove: ~[a=0 => 1/a=5]

            

             Suppose to the contrary...

 

                  5     a=0 => 1/a=5

                        Premise

 

                  6     1/a=5

                        Detach, 5, 4

 

                  7     a e real => [1/a=5 <=> a=1/5]

                        U Spec, 2

 

                  8     1/a=5 <=> a=1/5

                        Detach, 7, 3

 

                  9     [1/a=5 => a=1/5] & [a=1/5 => 1/a=5]

                        Iff-And, 8

 

                  10   1/a=5 => a=1/5

                        Split, 9

 

                  11   a=1/5 => 1/a=5

                        Split, 9

 

                  12   a=1/5

                        Detach, 10, 6

 

                  13   0=1/5

                        Substitute, 4, 12

 

                  14   0=1/5 & ~0=1/5

                        Join, 13, 1

 

         As Required:

 

            15   ~[a=0 => 1/a=5]

                  4 Conclusion, 5

 

    As Required:

 

      16   a=0 => ~[a=0 => 1/a=5]

            4 Conclusion, 4

 

      17   ~~[a=0 => 1/a=5] => ~a=0

            Contra, 16

 

      18   a=0 => 1/a=5 => ~a=0

            Rem DNeg, 17

 

        

         Prove: ~a=0 => [a=0 => 1/a=5]

        

         Suppose...

 

            19   ~a=0

                  Premise

 

            20   ~~a=0 => 1/a=5

                  Arb Cons, 19

 

            21   a=0 => 1/a=5

                  Rem DNeg, 20

 

    As Required:

 

      22   ~a=0 => [a=0 => 1/a=5]

            4 Conclusion, 19

 

      23   [a=0 => 1/a=5 => ~a=0] & [~a=0 => [a=0 => 1/a=5]]

            Join, 18, 22

 

      24   a=0 => 1/a=5 <=> ~a=0

            Iff-And, 23

 

As Required:

 

25   ALL(a):[a e real => [a=0 => 1/a=5 <=> ~a=0]]

      4 Conclusion, 3