AXIOMS
******
1     ~0=1/5
      Axiom
2     ALL(x):[x e real => [1/x=5 <=> x=1/5]]
      Axiom
    PROOF
    *****
    
    Prove: ALL(a):[a e real => [a=0 => 1/a=5 <=> ~a=0]]
    
    Suppose...
      3     a e real
            Premise
         Prove: a=0 => ~[a=0 => 1/a=5]
         
         Suppose...
            4     a=0
                  Premise
             Prove: ~[a=0 => 1/a=5]
             
             Suppose to the contrary...
                  5     a=0 => 1/a=5
                        Premise
                  6     1/a=5
                        Detach, 5, 4
                  7     a e real => [1/a=5 <=> a=1/5]
                        U Spec, 2
                  8     1/a=5 <=> a=1/5
                        Detach, 7, 3
                  9     [1/a=5 => a=1/5] & [a=1/5 => 1/a=5]
                        Iff-And, 8
                  10   1/a=5 => a=1/5
                        Split, 9
                  11   a=1/5 => 1/a=5
                        Split, 9
                  12   a=1/5
                        Detach, 10, 6
                  13   0=1/5
                        Substitute, 4, 12
                  14   0=1/5 & ~0=1/5
                        Join, 13, 1
         As Required:
            15   ~[a=0 => 1/a=5]
                  4 Conclusion, 5
    As Required:
      16   a=0 => ~[a=0 => 1/a=5]
            4 Conclusion, 4
      17   ~~[a=0 => 1/a=5] => ~a=0
            Contra, 16
      18   a=0 => 1/a=5 => ~a=0
            Rem DNeg, 17
         
         Prove: ~a=0 => [a=0 => 1/a=5]
         
         Suppose...
            19   ~a=0
                  Premise
            20   ~~a=0 => 1/a=5
                  Arb Cons, 19
            21   a=0 => 1/a=5
                  Rem DNeg, 20
    As Required:
      22   ~a=0 => [a=0 => 1/a=5]
            4 Conclusion, 19
      23   [a=0 => 1/a=5 => ~a=0] & [~a=0 => [a=0 => 1/a=5]]
            Join, 18, 22
      24   a=0 => 1/a=5 <=> ~a=0
            Iff-And, 23
As Required:
25   ALL(a):[a e real => [a=0 => 1/a=5 <=> ~a=0]]
      4 Conclusion, 3