THEOREM

*******

 

All supersets of an infinite set are themselves infinite.

 

(This proof was written with the aid of the author's DC Proof 2.0 software available free at http://www.dcproof.com )

 

 

Define: InfiniteA

*****************

 

1     ALL(a):[Set(a) => [InfiniteA(a)

     <=> EXIST(f):[ALL(b):[b e a => f(b) e a]

     & ALL(b):ALL(c):[b e a & c e a => [f(b)=f(c) => b=c]]

     & EXIST(b):[b e a & ALL(c):[c e a => ~f(c)=b]]]]]

      Axiom

 

    

     PROOF

     *****

    

     Suppose x is a subset of y

 

      2     Set(x) & Set(y) & ALL(a):[a e x => a e y]

            Premise

 

      3     Set(x)

            Split, 2

 

      4     Set(y)

            Split, 2

 

      5     ALL(a):[a e x => a e y]

            Split, 2

 

         

          Prove: InfiniteA(x) => InfiniteA(y)

         

          Suppose...

 

            6     InfiniteA(x)

                  Premise

 

            7     Set(x) => [InfiniteA(x)

              <=> EXIST(f):[ALL(b):[b e x => f(b) e x]

              & ALL(b):ALL(c):[b e x & c e x => [f(b)=f(c) => b=c]]

              & EXIST(b):[b e x & ALL(c):[c e x => ~f(c)=b]]]]

                  U Spec, 1

 

            8     InfiniteA(x)

              <=> EXIST(f):[ALL(b):[b e x => f(b) e x]

              & ALL(b):ALL(c):[b e x & c e x => [f(b)=f(c) => b=c]]

              & EXIST(b):[b e x & ALL(c):[c e x => ~f(c)=b]]]

                  Detach, 7, 3

 

            9     [InfiniteA(x) => EXIST(f):[ALL(b):[b e x => f(b) e x]

              & ALL(b):ALL(c):[b e x & c e x => [f(b)=f(c) => b=c]]

              & EXIST(b):[b e x & ALL(c):[c e x => ~f(c)=b]]]]

              & [EXIST(f):[ALL(b):[b e x => f(b) e x]

              & ALL(b):ALL(c):[b e x & c e x => [f(b)=f(c) => b=c]]

              & EXIST(b):[b e x & ALL(c):[c e x => ~f(c)=b]]] => InfiniteA(x)]

                  Iff-And, 8

 

            10    InfiniteA(x) => EXIST(f):[ALL(b):[b e x => f(b) e x]

              & ALL(b):ALL(c):[b e x & c e x => [f(b)=f(c) => b=c]]

              & EXIST(b):[b e x & ALL(c):[c e x => ~f(c)=b]]]

                  Split, 9

 

            11    EXIST(f):[ALL(b):[b e x => f(b) e x]

              & ALL(b):ALL(c):[b e x & c e x => [f(b)=f(c) => b=c]]

              & EXIST(b):[b e x & ALL(c):[c e x => ~f(c)=b]]] => InfiniteA(x)

                  Split, 9

 

            12    EXIST(f):[ALL(b):[b e x => f(b) e x]

              & ALL(b):ALL(c):[b e x & c e x => [f(b)=f(c) => b=c]]

              & EXIST(b):[b e x & ALL(c):[c e x => ~f(c)=b]]]

                  Detach, 10, 6

 

            13    ALL(b):[b e x => f(b) e x]

              & ALL(b):ALL(c):[b e x & c e x => [f(b)=f(c) => b=c]]

              & EXIST(b):[b e x & ALL(c):[c e x => ~f(c)=b]]

                  E Spec, 12

 

         

          Define: f

          *********

         

          An injective, but non-surjective mapping f: x --> x

 

            14    ALL(b):[b e x => f(b) e x]

                  Split, 13

 

            15    ALL(b):ALL(c):[b e x & c e x => [f(b)=f(c) => b=c]]

                  Split, 13

 

            16    EXIST(b):[b e x & ALL(c):[c e x => ~f(c)=b]]

                  Split, 13

 

            17    Set(y) => [InfiniteA(y)

              <=> EXIST(f):[ALL(b):[b e y => f(b) e y]

              & ALL(b):ALL(c):[b e y & c e y => [f(b)=f(c) => b=c]]

              & EXIST(b):[b e y & ALL(c):[c e y => ~f(c)=b]]]]

                  U Spec, 1

 

            18    InfiniteA(y)

              <=> EXIST(f):[ALL(b):[b e y => f(b) e y]

              & ALL(b):ALL(c):[b e y & c e y => [f(b)=f(c) => b=c]]

              & EXIST(b):[b e y & ALL(c):[c e y => ~f(c)=b]]]

                  Detach, 17, 4

 

            19    [InfiniteA(y) => EXIST(f):[ALL(b):[b e y => f(b) e y]

              & ALL(b):ALL(c):[b e y & c e y => [f(b)=f(c) => b=c]]

              & EXIST(b):[b e y & ALL(c):[c e y => ~f(c)=b]]]]

              & [EXIST(f):[ALL(b):[b e y => f(b) e y]

              & ALL(b):ALL(c):[b e y & c e y => [f(b)=f(c) => b=c]]

              & EXIST(b):[b e y & ALL(c):[c e y => ~f(c)=b]]] => InfiniteA(y)]

                  Iff-And, 18

 

            20    InfiniteA(y) => EXIST(f):[ALL(b):[b e y => f(b) e y]

              & ALL(b):ALL(c):[b e y & c e y => [f(b)=f(c) => b=c]]

              & EXIST(b):[b e y & ALL(c):[c e y => ~f(c)=b]]]

                  Split, 19

 

          Sufficient: For InfiniteA(y)

 

            21    EXIST(f):[ALL(b):[b e y => f(b) e y]

              & ALL(b):ALL(c):[b e y & c e y => [f(b)=f(c) => b=c]]

              & EXIST(b):[b e y & ALL(c):[c e y => ~f(c)=b]]] => InfiniteA(y)

                  Split, 19

 

            22    ALL(a1):ALL(a2):[Set(a1) & Set(a2) => EXIST(b):[Set'(b) & ALL(c1):ALL(c2):[(c1,c2) e b <=> c1 e a1 & c2 e a2]]]

                  Cart Prod

 

            23    ALL(a2):[Set(y) & Set(a2) => EXIST(b):[Set'(b) & ALL(c1):ALL(c2):[(c1,c2) e b <=> c1 e y & c2 e a2]]]

                  U Spec, 22

 

            24    Set(y) & Set(y) => EXIST(b):[Set'(b) & ALL(c1):ALL(c2):[(c1,c2) e b <=> c1 e y & c2 e y]]

                  U Spec, 23

 

            25    Set(y) & Set(y)

                  Join, 4, 4

 

            26    EXIST(b):[Set'(b) & ALL(c1):ALL(c2):[(c1,c2) e b <=> c1 e y & c2 e y]]

                  Detach, 24, 25

 

            27    Set'(y2) & ALL(c1):ALL(c2):[(c1,c2) e y2 <=> c1 e y & c2 e y]

                  E Spec, 26

 

         

          Define: y2

          **********

 

            28    Set'(y2)

                  Split, 27

 

            29    ALL(c1):ALL(c2):[(c1,c2) e y2 <=> c1 e y & c2 e y]

                  Split, 27

 

            30    EXIST(sub):[Set'(sub) & ALL(a):ALL(b):[(a,b) e sub <=> (a,b) e y2 & [a e x & b=f(a) | ~a e x & b=a]]]

                  Subset, 28

 

            31    Set'(g) & ALL(a):ALL(b):[(a,b) e g <=> (a,b) e y2 & [a e x & b=f(a) | ~a e x & b=a]]

                  E Spec, 30

 

         

          Define: g

          *********

 

            32    Set'(g)

                  Split, 31

 

            33    ALL(a):ALL(b):[(a,b) e g <=> (a,b) e y2 & [a e x & b=f(a) | ~a e x & b=a]]

                  Split, 31

 

            34    ALL(f):ALL(a):ALL(b):[ALL(c):ALL(d):[(c,d) e f => c e a & d e b]

              & ALL(c):[c e a => EXIST(d):[d e b & (c,d) e f]]

              & ALL(c):ALL(d1):ALL(d2):[(c,d1) e f & (c,d2) e f => d1=d2]

               => ALL(c):ALL(d):[d=f(c) <=> (c,d) e f]]

                  Function

 

            35    ALL(a):ALL(b):[ALL(c):ALL(d):[(c,d) e g => c e a & d e b]

              & ALL(c):[c e a => EXIST(d):[d e b & (c,d) e g]]

              & ALL(c):ALL(d1):ALL(d2):[(c,d1) e g & (c,d2) e g => d1=d2]

              => ALL(c):ALL(d):[d=g(c) <=> (c,d) e g]]

                  U Spec, 34

 

            36    ALL(b):[ALL(c):ALL(d):[(c,d) e g => c e y & d e b]

              & ALL(c):[c e y => EXIST(d):[d e b & (c,d) e g]]

              & ALL(c):ALL(d1):ALL(d2):[(c,d1) e g & (c,d2) e g => d1=d2]

              => ALL(c):ALL(d):[d=g(c) <=> (c,d) e g]]

                  U Spec, 35

 

          Sufficient: For functionality of g

 

            37    ALL(c):ALL(d):[(c,d) e g => c e y & d e y]

              & ALL(c):[c e y => EXIST(d):[d e y & (c,d) e g]]

              & ALL(c):ALL(d1):ALL(d2):[(c,d1) e g & (c,d2) e g => d1=d2]

              => ALL(c):ALL(d):[d=g(c) <=> (c,d) e g]

                  U Spec, 36

 

             

              Prove: ALL(c):ALL(d):[(c,d) e g => c e y & d e y]

             

              Suppose...

 

                  38    (u,v) e g

                        Premise

 

                  39    ALL(b):[(u,b) e g <=> (u,b) e y2 & [u e x & b=f(u) | ~u e x & b=u]]

                        U Spec, 33

 

                  40    (u,v) e g <=> (u,v) e y2 & [u e x & v=f(u) | ~u e x & v=u]

                        U Spec, 39

 

                  41    [(u,v) e g => (u,v) e y2 & [u e x & v=f(u) | ~u e x & v=u]]

                   & [(u,v) e y2 & [u e x & v=f(u) | ~u e x & v=u] => (u,v) e g]

                        Iff-And, 40

 

                  42    (u,v) e g => (u,v) e y2 & [u e x & v=f(u) | ~u e x & v=u]

                        Split, 41

 

                  43    (u,v) e y2 & [u e x & v=f(u) | ~u e x & v=u] => (u,v) e g

                        Split, 41

 

                  44    (u,v) e y2 & [u e x & v=f(u) | ~u e x & v=u]

                        Detach, 42, 38

 

                  45    (u,v) e y2

                        Split, 44

 

                  46    u e x & v=f(u) | ~u e x & v=u

                        Split, 44

 

                  47    ALL(c2):[(u,c2) e y2 <=> u e y & c2 e y]

                        U Spec, 29

 

                  48    (u,v) e y2 <=> u e y & v e y

                        U Spec, 47

 

                  49    [(u,v) e y2 => u e y & v e y]

                   & [u e y & v e y => (u,v) e y2]

                        Iff-And, 48

 

                  50    (u,v) e y2 => u e y & v e y

                        Split, 49

 

                  51    u e y & v e y => (u,v) e y2

                        Split, 49

 

                  52    u e y & v e y

                        Detach, 50, 45

 

          Functionality, Part 1

 

            53    ALL(c):ALL(d):[(c,d) e g => c e y & d e y]

                  4 Conclusion, 38

 

             

              Prove: ALL(c):[c e y => EXIST(d):[d e y & (c,d) e g]]

             

              Suppose...

 

                  54    u e y

                        Premise

 

              2 cases:

 

                  55    u e x | ~u e x

                        Or Not

 

                   Case 1

                  

                   Suppose...

 

                        56    u e x

                              Premise

 

                        57    ALL(b):[(u,b) e g <=> (u,b) e y2 & [u e x & b=f(u) | ~u e x & b=u]]

                              U Spec, 33

 

                        58    (u,f(u)) e g <=> (u,f(u)) e y2 & [u e x & f(u)=f(u) | ~u e x & f(u)=u]

                              U Spec, 57

 

                        59    [(u,f(u)) e g => (u,f(u)) e y2 & [u e x & f(u)=f(u) | ~u e x & f(u)=u]]

                        & [(u,f(u)) e y2 & [u e x & f(u)=f(u) | ~u e x & f(u)=u] => (u,f(u)) e g]

                              Iff-And, 58

 

                        60    (u,f(u)) e g => (u,f(u)) e y2 & [u e x & f(u)=f(u) | ~u e x & f(u)=u]

                              Split, 59

 

                   Sufficient: (u,f(u)) e g

 

                        61    (u,f(u)) e y2 & [u e x & f(u)=f(u) | ~u e x & f(u)=u] => (u,f(u)) e g

                              Split, 59

 

                        62    ALL(c2):[(u,c2) e y2 <=> u e y & c2 e y]

                              U Spec, 29

 

                        63    (u,f(u)) e y2 <=> u e y & f(u) e y

                              U Spec, 62

 

                        64    [(u,f(u)) e y2 => u e y & f(u) e y]

                        & [u e y & f(u) e y => (u,f(u)) e y2]

                              Iff-And, 63

 

                        65    (u,f(u)) e y2 => u e y & f(u) e y

                              Split, 64

 

                        66    u e y & f(u) e y => (u,f(u)) e y2

                              Split, 64

 

                        67    u e x => f(u) e x

                              U Spec, 14

 

                        68    f(u) e x

                              Detach, 67, 56

 

                        69    f(u) e x => f(u) e y

                              U Spec, 5

 

                        70    f(u) e y

                              Detach, 69, 68

 

                        71    u e y & f(u) e y

                              Join, 54, 70

 

                        72    (u,f(u)) e y2

                              Detach, 66, 71

 

                        73    f(u)=f(u)

                              Reflex

 

                        74    u e x & f(u)=f(u)

                              Join, 56, 73

 

                        75    u e x & f(u)=f(u) | ~u e x & f(u)=u

                              Arb Or, 74

 

                        76    (u,f(u)) e y2

                        & [u e x & f(u)=f(u) | ~u e x & f(u)=u]

                              Join, 72, 75

 

                        77    (u,f(u)) e g

                              Detach, 61, 76

 

                        78    f(u) e y & (u,f(u)) e g

                              Join, 70, 77

 

                        79    EXIST(d):[d e y & (u,d) e g]

                              E Gen, 78

 

                  80    u e x => EXIST(d):[d e y & (u,d) e g]

                        4 Conclusion, 56

 

                   Case 2

                  

                   Suppose...

 

                        81    ~u e x

                              Premise

 

                        82    ALL(b):[(u,b) e g <=> (u,b) e y2 & [u e x & b=f(u) | ~u e x & b=u]]

                              U Spec, 33

 

                        83    (u,u) e g <=> (u,u) e y2 & [u e x & u=f(u) | ~u e x & u=u]

                              U Spec, 82

 

                        84    [(u,u) e g => (u,u) e y2 & [u e x & u=f(u) | ~u e x & u=u]]

                        & [(u,u) e y2 & [u e x & u=f(u) | ~u e x & u=u] => (u,u) e g]

                              Iff-And, 83

 

                        85    (u,u) e g => (u,u) e y2 & [u e x & u=f(u) | ~u e x & u=u]

                              Split, 84

 

                        86    (u,u) e y2 & [u e x & u=f(u) | ~u e x & u=u] => (u,u) e g

                              Split, 84

 

                        87    ALL(c2):[(u,c2) e y2 <=> u e y & c2 e y]

                              U Spec, 29

 

                        88    (u,u) e y2 <=> u e y & u e y

                              U Spec, 87

 

                        89    [(u,u) e y2 => u e y & u e y]

                        & [u e y & u e y => (u,u) e y2]

                              Iff-And, 88

 

                        90    (u,u) e y2 => u e y & u e y

                              Split, 89

 

                        91    u e y & u e y => (u,u) e y2

                              Split, 89

 

                        92    u e y & u e y

                              Join, 54, 54

 

                        93    (u,u) e y2

                              Detach, 91, 92

 

                        94    u=u

                              Reflex

 

                        95    ~u e x & u=u

                              Join, 81, 94

 

                        96    u e x & u=f(u) | ~u e x & u=u

                              Arb Or, 95

 

                        97    (u,u) e y2 & [u e x & u=f(u) | ~u e x & u=u]

                              Join, 93, 96

 

                        98    (u,u) e g

                              Detach, 86, 97

 

                        99    u e y & (u,u) e g

                              Join, 54, 98

 

                        100  EXIST(d):[d e y & (u,d) e g]

                              E Gen, 99

 

                  101  ~u e x => EXIST(d):[d e y & (u,d) e g]

                        4 Conclusion, 81

 

                  102  [u e x => EXIST(d):[d e y & (u,d) e g]]

                   & [~u e x => EXIST(d):[d e y & (u,d) e g]]

                        Join, 80, 101

 

                  103  EXIST(d):[d e y & (u,d) e g]

                        Cases, 55, 102

 

          Functionality, Part 2

 

            104  ALL(c):[c e y => EXIST(d):[d e y & (c,d) e g]]

                  4 Conclusion, 54

 

             

              Prove: ALL(c):ALL(d1):ALL(d2):[(c,d1) e g & (c,d2) e g => d1=d2]

             

              Suppose...

 

                  105  (u,v1) e g & (u,v2) e g

                        Premise

 

                  106  (u,v1) e g

                        Split, 105

 

                  107  (u,v2) e g

                        Split, 105

 

                  108  ALL(b):[(u,b) e g <=> (u,b) e y2 & [u e x & b=f(u) | ~u e x & b=u]]

                        U Spec, 33

 

                  109  (u,v1) e g <=> (u,v1) e y2 & [u e x & v1=f(u) | ~u e x & v1=u]

                        U Spec, 108

 

                  110  [(u,v1) e g => (u,v1) e y2 & [u e x & v1=f(u) | ~u e x & v1=u]]

                   & [(u,v1) e y2 & [u e x & v1=f(u) | ~u e x & v1=u] => (u,v1) e g]

                        Iff-And, 109

 

                  111  (u,v1) e g => (u,v1) e y2 & [u e x & v1=f(u) | ~u e x & v1=u]

                        Split, 110

 

                  112  (u,v1) e y2 & [u e x & v1=f(u) | ~u e x & v1=u] => (u,v1) e g

                        Split, 110

 

                  113  (u,v1) e y2 & [u e x & v1=f(u) | ~u e x & v1=u]

                        Detach, 111, 106

 

                  114  (u,v1) e y2

                        Split, 113

 

                  115  u e x & v1=f(u) | ~u e x & v1=u

                        Split, 113

 

                  116  ~[u e x & v1=f(u)] => ~u e x & v1=u

                        Imply-Or, 115

 

                  117  ~~[~u e x | ~v1=f(u)] => ~u e x & v1=u

                        DeMorgan, 116

 

                  118  ~u e x | ~v1=f(u) => ~u e x & v1=u

                        Rem DNeg, 117

 

                  119  ~[~u e x & v1=u] => ~~[u e x & v1=f(u)]

                        Contra, 116

 

                  120  ~[~u e x & v1=u] => u e x & v1=f(u)

                        Rem DNeg, 119

 

                  121  ~~[~~u e x | ~v1=u] => u e x & v1=f(u)

                        DeMorgan, 120

 

                  122  ~~u e x | ~v1=u => u e x & v1=f(u)

                        Rem DNeg, 121

 

                  123  u e x | ~v1=u => u e x & v1=f(u)

                        Rem DNeg, 122

 

                  124  (u,v2) e g <=> (u,v2) e y2 & [u e x & v2=f(u) | ~u e x & v2=u]

                        U Spec, 108

 

                  125  [(u,v2) e g => (u,v2) e y2 & [u e x & v2=f(u) | ~u e x & v2=u]]

                   & [(u,v2) e y2 & [u e x & v2=f(u) | ~u e x & v2=u] => (u,v2) e g]

                        Iff-And, 124

 

                  126  (u,v2) e g => (u,v2) e y2 & [u e x & v2=f(u) | ~u e x & v2=u]

                        Split, 125

 

                  127  (u,v2) e y2 & [u e x & v2=f(u) | ~u e x & v2=u] => (u,v2) e g

                        Split, 125

 

                  128  (u,v2) e y2 & [u e x & v2=f(u) | ~u e x & v2=u]

                        Detach, 126, 107

 

                  129  (u,v2) e y2

                        Split, 128

 

                  130  u e x & v2=f(u) | ~u e x & v2=u

                        Split, 128

 

                  131  ~[u e x & v2=f(u)] => ~u e x & v2=u

                        Imply-Or, 130

 

                  132  ~~[~u e x | ~v2=f(u)] => ~u e x & v2=u

                        DeMorgan, 131

 

                  133  ~u e x | ~v2=f(u) => ~u e x & v2=u

                        Rem DNeg, 132

 

                  134  ~[~u e x & v2=u] => ~~[u e x & v2=f(u)]

                        Contra, 131

 

                  135  ~[~u e x & v2=u] => u e x & v2=f(u)

                        Rem DNeg, 134

 

                  136  ~~[~~u e x | ~v2=u] => u e x & v2=f(u)

                        DeMorgan, 135

 

                  137  ~~u e x | ~v2=u => u e x & v2=f(u)

                        Rem DNeg, 136

 

                  138  u e x | ~v2=u => u e x & v2=f(u)

                        Rem DNeg, 137

 

              2 cases:

 

                  139  u e x | ~u e x

                        Or Not

 

                  

                   Case 1

                  

                   Suppose...

 

                        140  u e x

                              Premise

 

                        141  u e x | ~v1=u

                              Arb Or, 140

 

                        142  u e x & v1=f(u)

                              Detach, 123, 141

 

                        143  u e x

                              Split, 142

 

                        144  v1=f(u)

                              Split, 142

 

                        145  u e x | ~v2=u

                              Arb Or, 140

 

                        146  u e x & v2=f(u)

                              Detach, 138, 145

 

                        147  u e x

                              Split, 146

 

                        148  v2=f(u)

                              Split, 146

 

                        149  v1=v2

                              Substitute, 148, 144

 

              As Required:

 

                  150  u e x => v1=v2

                        4 Conclusion, 140

 

                   Case 2

 

                        151  ~u e x

                              Premise

 

                        152  ~u e x | ~v1=f(u)

                              Arb Or, 151

 

                        153  ~u e x & v1=u

                              Detach, 118, 152

 

                        154  ~u e x

                              Split, 153

 

                        155  v1=u

                              Split, 153

 

                        156  ~u e x | ~v2=f(u)

                              Arb Or, 151

 

                        157  ~u e x & v2=u

                              Detach, 133, 156

 

                        158  ~u e x

                              Split, 157

 

                        159  v2=u

                              Split, 157

 

                        160  v1=v2

                              Substitute, 159, 155

 

                  161  ~u e x => v1=v2

                        4 Conclusion, 151

 

                  162  [u e x => v1=v2] & [~u e x => v1=v2]

                        Join, 150, 161

 

                  163  v1=v2

                        Cases, 139, 162

 

          Functionality, Part 3

 

            164  ALL(c):ALL(d1):ALL(d2):[(c,d1) e g & (c,d2) e g => d1=d2]

                  4 Conclusion, 105

 

            165  ALL(c):ALL(d):[(c,d) e g => c e y & d e y]

              & ALL(c):[c e y => EXIST(d):[d e y & (c,d) e g]]

                  Join, 53, 104

 

            166  ALL(c):ALL(d):[(c,d) e g => c e y & d e y]

              & ALL(c):[c e y => EXIST(d):[d e y & (c,d) e g]]

              & ALL(c):ALL(d1):ALL(d2):[(c,d1) e g & (c,d2) e g => d1=d2]

                  Join, 165, 164

 

         

          g is a function

 

            167  ALL(c):ALL(d):[d=g(c) <=> (c,d) e g]

                  Detach, 37, 166

 

             

              Prove: ALL(a):[a e y => g(a) e y]

             

              Suppose...

 

                  168  u e y

                        Premise

 

                  169  u e y => EXIST(d):[d e y & (u,d) e g]

                        U Spec, 104

 

                  170  EXIST(d):[d e y & (u,d) e g]

                        Detach, 169, 168

 

                  171  v e y & (u,v) e g

                        E Spec, 170

 

                  172  v e y

                        Split, 171

 

                  173  (u,v) e g

                        Split, 171

 

                  174  ALL(d):[d=g(u) <=> (u,d) e g]

                        U Spec, 167

 

                  175  v=g(u) <=> (u,v) e g

                        U Spec, 174

 

                  176  [v=g(u) => (u,v) e g] & [(u,v) e g => v=g(u)]

                        Iff-And, 175

 

                  177  v=g(u) => (u,v) e g

                        Split, 176

 

                  178  (u,v) e g => v=g(u)

                        Split, 176

 

                  179  v=g(u)

                        Detach, 178, 173

 

                  180  g(u) e y

                        Substitute, 179, 172

 

          As Required:

 

            181  ALL(a):[a e y => g(a) e y]

                  4 Conclusion, 168

 

             

              Prove: ALL(a):[a e y => [a e x => g(a)=f(a)] & [~a e x => g(a)=a]]

             

              Suppose...

 

                  182  u e y

                        Premise

 

                  

                   Prove: u e x => g(u)=f(u)

                  

                   Suppose...

 

                        183  u e x

                              Premise

 

                        184  ALL(b):[(u,b) e g <=> (u,b) e y2 & [u e x & b=f(u) | ~u e x & b=u]]

                              U Spec, 33

 

                        185  (u,f(u)) e g <=> (u,f(u)) e y2 & [u e x & f(u)=f(u) | ~u e x & f(u)=u]

                              U Spec, 184

 

                        186  [(u,f(u)) e g => (u,f(u)) e y2 & [u e x & f(u)=f(u) | ~u e x & f(u)=u]]

                        & [(u,f(u)) e y2 & [u e x & f(u)=f(u) | ~u e x & f(u)=u] => (u,f(u)) e g]

                              Iff-And, 185

 

                        187  (u,f(u)) e g => (u,f(u)) e y2 & [u e x & f(u)=f(u) | ~u e x & f(u)=u]

                              Split, 186

 

                   Sufficient: (u,f(u)) e g

 

                        188  (u,f(u)) e y2 & [u e x & f(u)=f(u) | ~u e x & f(u)=u] => (u,f(u)) e g

                              Split, 186

 

                        189  ALL(c2):[(u,c2) e y2 <=> u e y & c2 e y]

                              U Spec, 29

 

                        190  (u,f(u)) e y2 <=> u e y & f(u) e y

                              U Spec, 189

 

                        191  [(u,f(u)) e y2 => u e y & f(u) e y]

                        & [u e y & f(u) e y => (u,f(u)) e y2]

                              Iff-And, 190

 

                        192  (u,f(u)) e y2 => u e y & f(u) e y

                              Split, 191

 

                        193  u e y & f(u) e y => (u,f(u)) e y2

                              Split, 191

 

                        194  u e x => f(u) e x

                              U Spec, 14

 

                        195  f(u) e x

                              Detach, 194, 183

 

                        196  f(u) e x => f(u) e y

                              U Spec, 5

 

                        197  f(u) e y

                              Detach, 196, 195

 

                        198  u e y & f(u) e y

                              Join, 182, 197

 

                        199  (u,f(u)) e y2

                              Detach, 193, 198

 

                        200  f(u)=f(u)

                              Reflex

 

                        201  u e x & f(u)=f(u)

                              Join, 183, 200

 

                        202  u e x & f(u)=f(u) | ~u e x & f(u)=u

                              Arb Or, 201

 

                        203  (u,f(u)) e y2

                        & [u e x & f(u)=f(u) | ~u e x & f(u)=u]

                              Join, 199, 202

 

                        204  (u,f(u)) e g

                              Detach, 188, 203

 

                        205  ALL(d):[d=g(u) <=> (u,d) e g]

                              U Spec, 167

 

                        206  f(u)=g(u) <=> (u,f(u)) e g

                              U Spec, 205

 

                        207  [f(u)=g(u) => (u,f(u)) e g]

                        & [(u,f(u)) e g => f(u)=g(u)]

                              Iff-And, 206

 

                        208  f(u)=g(u) => (u,f(u)) e g

                              Split, 207

 

                        209  (u,f(u)) e g => f(u)=g(u)

                              Split, 207

 

                        210  f(u)=g(u)

                              Detach, 209, 204

 

                        211  g(u)=f(u)

                              Sym, 210

 

              As Required:

 

                  212  u e x => g(u)=f(u)

                        4 Conclusion, 183

 

                  

                   Prove: ~u e x => g(u)=u

                  

                   Suppose...

 

                        213  ~u e x

                              Premise

 

                        214  ALL(b):[(u,b) e g <=> (u,b) e y2 & [u e x & b=f(u) | ~u e x & b=u]]

                              U Spec, 33

 

                        215  (u,u) e g <=> (u,u) e y2 & [u e x & u=f(u) | ~u e x & u=u]

                              U Spec, 214

 

                        216  [(u,u) e g => (u,u) e y2 & [u e x & u=f(u) | ~u e x & u=u]]

                        & [(u,u) e y2 & [u e x & u=f(u) | ~u e x & u=u] => (u,u) e g]

                              Iff-And, 215

 

                        217  (u,u) e g => (u,u) e y2 & [u e x & u=f(u) | ~u e x & u=u]

                              Split, 216

 

                        218  (u,u) e y2 & [u e x & u=f(u) | ~u e x & u=u] => (u,u) e g

                              Split, 216

 

                        219  ALL(c2):[(u,c2) e y2 <=> u e y & c2 e y]

                              U Spec, 29

 

                        220  (u,u) e y2 <=> u e y & u e y

                              U Spec, 219

 

                        221  [(u,u) e y2 => u e y & u e y]

                        & [u e y & u e y => (u,u) e y2]

                              Iff-And, 220

 

                        222  (u,u) e y2 => u e y & u e y

                              Split, 221

 

                        223  u e y & u e y => (u,u) e y2

                              Split, 221

 

                        224  u e y & u e y

                              Join, 182, 182

 

                        225  (u,u) e y2

                              Detach, 223, 224

 

                        226  u=u

                              Reflex

 

                        227  ~u e x & u=u

                              Join, 213, 226

 

                        228  u e x & u=f(u) | ~u e x & u=u

                              Arb Or, 227

 

                        229  (u,u) e y2 & [u e x & u=f(u) | ~u e x & u=u]

                              Join, 225, 228

 

                        230  (u,u) e g

                              Detach, 218, 229

 

                        231  ALL(d):[d=g(u) <=> (u,d) e g]

                              U Spec, 167

 

                        232  u=g(u) <=> (u,u) e g

                              U Spec, 231

 

                        233  [u=g(u) => (u,u) e g] & [(u,u) e g => u=g(u)]

                              Iff-And, 232

 

                        234  u=g(u) => (u,u) e g

                              Split, 233

 

                        235  (u,u) e g => u=g(u)

                              Split, 233

 

                        236  u=g(u)

                              Detach, 235, 230

 

                        237  g(u)=u

                              Sym, 236

 

              As Required:

 

                  238  ~u e x => g(u)=u

                        4 Conclusion, 213

 

                  239  [u e x => g(u)=f(u)] & [~u e x => g(u)=u]

                        Join, 212, 238

 

          As Required:

 

            240  ALL(a):[a e y => [a e x => g(a)=f(a)] & [~a e x => g(a)=a]]

                  4 Conclusion, 182

 

             

              Prove: ALL(b):ALL(c):[b e y & c e y => [g(b)=g(c) => b=c]]

             

              Suppose...

 

                  241  u e y & v e y

                        Premise

 

                  242  u e y

                        Split, 241

 

                  243  v e y

                        Split, 241

 

                  

                   Prove: g(u)=g(v) => u=v

                  

                   Suppose...

 

                        244  g(u)=g(v)

                              Premise

 

                        245  u e y => [u e x => g(u)=f(u)] & [~u e x => g(u)=u]

                              U Spec, 240

 

                        246  [u e x => g(u)=f(u)] & [~u e x => g(u)=u]

                              Detach, 245, 242

 

                        247  u e x => g(u)=f(u)

                              Split, 246

 

                        248  ~u e x => g(u)=u

                              Split, 246

 

                        249  v e y => [v e x => g(v)=f(v)] & [~v e x => g(v)=v]

                              U Spec, 240

 

                        250  [v e x => g(v)=f(v)] & [~v e x => g(v)=v]

                              Detach, 249, 243

 

                        251  v e x => g(v)=f(v)

                              Split, 250

 

                        252  ~v e x => g(v)=v

                              Split, 250

 

                       

                        Suppose to the contrary...

 

                              253  u e x & ~v e x

                                    Premise

 

                              254  u e x

                                    Split, 253

 

                              255  ~v e x

                                    Split, 253

 

                              256  g(u)=f(u)

                                    Detach, 247, 254

 

                              257  g(v)=v

                                    Detach, 252, 255

 

                              258  f(u)=g(v)

                                    Substitute, 256, 244

 

                              259  f(u)=v

                                    Substitute, 257, 258

 

                              260  u e x => f(u) e x

                                    U Spec, 14

 

                              261  f(u) e x

                                    Detach, 260, 254

 

                              262  v e x

                                    Substitute, 259, 261

 

                              263  v e x & ~v e x

                                    Join, 262, 255

 

                   As Required:

 

                        264  ~[u e x & ~v e x]

                              4 Conclusion, 253

 

                       

                        Prove: ~[~u e x & v e x]

                       

                        Suppose to the contrary...

 

                              265  ~u e x & v e x

                                    Premise

 

                              266  ~u e x

                                    Split, 265

 

                              267  v e x

                                    Split, 265

 

                              268  g(u)=u

                                    Detach, 248, 266

 

                              269  g(v)=f(v)

                                    Detach, 251, 267

 

                              270  g(u)=f(v)

                                    Substitute, 269, 244

 

                              271  u=f(v)

                                    Substitute, 268, 270

 

                              272  v e x => f(v) e x

                                    U Spec, 14

 

                              273  f(v) e x

                                    Detach, 272, 267

 

                              274  u e x

                                    Substitute, 271, 273

 

                              275  u e x & ~u e x

                                    Join, 274, 266

 

                   As Required:

 

                        276  ~[~u e x & v e x]

                              4 Conclusion, 265

 

                   2 cases:

 

                        277  u e x | ~u e x

                              Or Not

 

                   2 sub-cases:

 

                        278  v e x | ~v e x

                              Or Not

 

                       

                        Case 1

                       

                        Prove: u e x => u=v

                       

                        Suppose...

 

                              279  u e x

                                    Premise

 

                            

                             Sub-case 1

                            

                             Prove: v e x => u=v

                            

                             Suppose...

 

                                    280  v e x

                                          Premise

 

                                    281  g(u)=f(u)

                                          Detach, 247, 279

 

                                    282  g(v)=f(v)

                                          Detach, 251, 280

 

                                    283  f(u)=g(v)

                                          Substitute, 281, 244

 

                                    284  f(u)=f(v)

                                          Substitute, 282, 283

 

                                    285  ALL(c):[u e x & c e x => [f(u)=f(c) => u=c]]

                                          U Spec, 15

 

                                    286  u e x & v e x => [f(u)=f(v) => u=v]

                                          U Spec, 285

 

                                    287  u e x & v e x

                                          Join, 279, 280

 

                                    288  f(u)=f(v) => u=v

                                          Detach, 286, 287

 

                                    289  u=v

                                          Detach, 288, 284

 

                        As Required:

 

                              290  v e x => u=v

                                    4 Conclusion, 280

 

                            

                             Sub-case 2

                            

                             Prove: ~v e x => u=v

                            

                             Suppose...

 

                                    291  ~v e x

                                          Premise

 

                                    292  ~~[u e x & ~v e x] => u=v

                                          Arb Cons, 264

 

                                    293  u e x & ~v e x => u=v

                                          Rem DNeg, 292

 

                                    294  u e x & ~v e x

                                          Join, 279, 291

 

                                    295  u=v

                                          Detach, 293, 294

 

                        As Required:

 

                              296  ~v e x => u=v

                                    4 Conclusion, 291

 

                              297  [v e x => u=v] & [~v e x => u=v]

                                    Join, 290, 296

 

                              298  u=v

                                    Cases, 278, 297

 

                   As Required:

 

                        299  u e x => u=v

                              4 Conclusion, 279

 

                        Case 2

                       

                        Prove: ~u e x => u=v

                       

                        Suppose...

 

                              300  ~u e x

                                    Premise

 

                            

                             Sub-case 1

                            

                             Prove: v e x => u=v

                            

                             Suppose...

 

                                    301  v e x

                                          Premise

 

                                    302  ~u e x & v e x

                                          Join, 300, 301

 

                                    303  ~~[~u e x & v e x] => u=v

                                          Arb Cons, 276

 

                                    304  ~u e x & v e x => u=v

                                          Rem DNeg, 303

 

                                    305  u=v

                                          Detach, 304, 302

 

                        As Required:

 

                              306  v e x => u=v

                                    4 Conclusion, 301

 

                            Sub-case 2

                            

                             Prove: ~v e x => u=v

                            

                             Suppose...

 

                                    307  ~v e x

                                          Premise

 

                                    308  g(u)=u

                                          Detach, 248, 300

 

                                    309  g(v)=v

                                          Detach, 252, 307

 

                                    310  u=g(v)

                                          Substitute, 308, 244

 

                                    311  u=v

                                          Substitute, 309, 310

 

                        As Required:

 

                              312  ~v e x => u=v

                                    4 Conclusion, 307

 

                              313  [v e x => u=v] & [~v e x => u=v]

                                    Join, 306, 312

 

                              314  u=v

                                    Cases, 278, 313

 

                   As Required:

 

                        315  ~u e x => u=v

                              4 Conclusion, 300

 

                        316  [u e x => u=v] & [~u e x => u=v]

                              Join, 299, 315

 

                        317  u=v

                              Cases, 277, 316

 

              As Required:

 

                  318  g(u)=g(v) => u=v

                        4 Conclusion, 244

 

          As Required:

 

            319  ALL(b):ALL(c):[b e y & c e y => [g(b)=g(c) => b=c]]

                  4 Conclusion, 241

 

            320  x0 e x & ALL(c):[c e x => ~f(c)=x0]

                  E Spec, 16

 

          Define: x0

         

          An element of x that has no pre-image under f

 

            321  x0 e x

                  Split, 320

 

            322  ALL(c):[c e x => ~f(c)=x0]

                  Split, 320

 

            323  x0 e x => x0 e y

                  U Spec, 5

 

            324  x0 e y

                  Detach, 323, 321

 

             

              Prove: ALL(c):[c e y => ~g(c)=x0]

             

              Suppose...

 

                  325  u e y

                        Premise

 

              2 cases:

 

                  326  u e x | ~u e x

                        Or Not

 

                  

                   Case 1

                  

                   Prove: u e x => ~g(u)=x0

                  

                   Suppose...

 

                        327  u e x

                              Premise

 

                        328  u e y => [u e x => g(u)=f(u)] & [~u e x => g(u)=u]

                              U Spec, 240

 

                        329  [u e x => g(u)=f(u)] & [~u e x => g(u)=u]

                              Detach, 328, 325

 

                        330  u e x => g(u)=f(u)

                              Split, 329

 

                        331  ~u e x => g(u)=u

                              Split, 329

 

                        332  g(u)=f(u)

                              Detach, 330, 327

 

                        333  u e x => ~f(u)=x0

                              U Spec, 322

 

                        334  ~f(u)=x0

                              Detach, 333, 327

 

                        335  ~g(u)=x0

                              Substitute, 332, 334

 

              As Required:

 

                  336  u e x => ~g(u)=x0

                        4 Conclusion, 327

 

                  

                   Case 2

                  

                   Prove: ~u e x => ~g(u)=x0

                  

                   Suppose...

 

                        337  ~u e x

                              Premise

 

                        338  u e y => [u e x => g(u)=f(u)] & [~u e x => g(u)=u]

                              U Spec, 240

 

                        339  [u e x => g(u)=f(u)] & [~u e x => g(u)=u]

                              Detach, 338, 325

 

                        340  u e x => g(u)=f(u)

                              Split, 339

 

                        341  ~u e x => g(u)=u

                              Split, 339

 

                        342  g(u)=u

                              Detach, 341, 337

 

                        343  ~g(u) e x

                              Substitute, 342, 337

 

                       

                        Prove: ~g(u)=x0

                       

                        Suppose to the contrary...

 

                              344  g(u)=x0

                                    Premise

 

                              345  ~x0 e x

                                    Substitute, 344, 343

 

                              346  x0 e x & ~x0 e x

                                    Join, 321, 345

 

                   As Required:

 

                        347  ~g(u)=x0

                              4 Conclusion, 344

 

              As Required:

 

                  348  ~u e x => ~g(u)=x0

                        4 Conclusion, 337

 

                  349  [u e x => ~g(u)=x0] & [~u e x => ~g(u)=x0]

                        Join, 336, 348

 

                  350  ~g(u)=x0

                        Cases, 326, 349

 

          As Required:

 

            351  ALL(c):[c e y => ~g(c)=x0]

                  4 Conclusion, 325

 

            352  x0 e y & ALL(c):[c e y => ~g(c)=x0]

                  Join, 324, 351

 

          As Required:

 

            353  EXIST(b):[b e y & ALL(c):[c e y => ~g(c)=b]]

                  E Gen, 352

 

            354  ALL(a):[a e y => g(a) e y]

              & ALL(b):ALL(c):[b e y & c e y => [g(b)=g(c) => b=c]]

                  Join, 181, 319

 

            355  ALL(a):[a e y => g(a) e y]

              & ALL(b):ALL(c):[b e y & c e y => [g(b)=g(c) => b=c]]

              & EXIST(b):[b e y & ALL(c):[c e y => ~g(c)=b]]

                  Join, 354, 353

 

            356  EXIST(f):[ALL(a):[a e y => f(a) e y]

              & ALL(b):ALL(c):[b e y & c e y => [f(b)=f(c) => b=c]]

              & EXIST(b):[b e y & ALL(c):[c e y => ~f(c)=b]]]

                  E Gen, 355

 

            357  InfiniteA(y)

                  Detach, 21, 356

 

     As Required:

 

      358  InfiniteA(x) => InfiniteA(y)

            4 Conclusion, 6

 

As Required:

 

359  ALL(x):ALL(y):[Set(x) & Set(y) & ALL(a):[a e x => a e y]

     => [InfiniteA(x) => InfiniteA(y)]]

      4 Conclusion, 2