Define: f, a function mapping x to y 1 ALL(a):[ax => f(a)y] Premise Define: finv, the inverse of f 2 ALL(a):[ax => finv(f(a))=a] Premise Suppose we have... 3 px Premise Applying the definition of f... 4 px => f(p)y U Spec, 1 5 f(p)y Detach, 4, 3 Applying the definition of finv... 6 px => finv(f(p))=p U Spec, 2 7 finv(f(p))=p Detach, 6, 3 Joining lines 5 and 7... 8 f(p)y & finv(f(p))=p Join, 5, 7 As Required: 9 EXIST(b):[by & finv(b)=p] E Gen, 8 10 px => EXIST(b):[by & finv(b)=p] Conclusion, 3 Generalizing... 11 ALL(a):[ax => EXIST(b):[by & finv(b)=a]] U Gen, 10