Introduction
------------
Prove: ~EXIST(a):[a e qpos & a*a=2/1]
where qpos is the set of postive rational numbers and 2/1 = 2
Axioms, Definitions and Previous Results
----------------------------------------
Fundamental properties of the set of natural numbers n (from Peano's Axioms)
1 Set(n)
Axiom
2 1 e n
Axiom
Define: + for n
3 ALL(a):ALL(b):[a e n & b e n => a+b e n]
Axiom
4 ALL(a):[a e n => ~a+1=1]
Axiom
5 ALL(a):ALL(b):[a e n & b e n & a+1=b+1 => a=b]
Axiom
6 ALL(a):ALL(b):[a e n & b e n => a+(b+1)=a+b+1]
Axiom
7 ALL(a):[Set(a) & 1 e a & ALL(b):[b e n & b e a => b+1 e a] => ALL(b):[b e n => b e a]]
Axiom
Define: 2
8 2 e n
Axiom
9 1+1=2
Axiom
Define: * for n
10 ALL(a):ALL(b):[a e n & b e n => a*b e n]
& ALL(a):[a e n => a*1=a]
& ALL(a):ALL(b):[a e n & b e n => a*(b+1)=a*b+a]
Definition
11 ALL(a):ALL(b):[a e n & b e n => a*b e n]
Split, 10
12 ALL(a):[a e n => a*1=a]
Split, 10
13 ALL(a):ALL(b):[a e n & b e n => a*(b+1)=a*b+a]
Split, 10
Associativity of * on n
14 ALL(a):ALL(b):ALL(c):[a e n & b e n & c e n => a*b*c=a*(b*c)]
Axiom
Commutativity of * on n
15 ALL(a):ALL(b):[a e n & b e n => a*b=b*a]
Axiom
Right cancellability of * on n
16 ALL(a):ALL(b):ALL(c):[a e n & b e n & c e n & a*b=c*b => a=c]
Axiom
Left cancellability of * on n
17 ALL(a):ALL(b):ALL(c):[a e n & b e n & c e n & a*b=a*c => b=c]
Axiom
Define: < on n
18 ALL(a):ALL(b):[a e n & b e n => [a<b <=> EXIST(c):[c e n & a+c=b]]]
Definition
Previous result x<=y iff ~y<x
19 ALL(a):ALL(b):[a e n & b e n => [a<=b <=> ~b<a]]
Axiom
Define: Div
Div(x,y) means x divides y, or y is divisible by x
20 ALL(a):ALL(b):[a e n & b e n => [Div(a,b) <=> EXIST(c):[c e n & b=a*c]]]
Axiom
Odd x Odd = Odd
Previous result: OddxOdd2.proof
21 ALL(a):ALL(b):[a e n & b e n & ~Div(2,a) & ~Div(2,b) => ~Div(2,a*b)]
Axiom
Define: gcd
gcd(x,y) is the greatest common divisor of x and y
22 ALL(a):ALL(b):[a e n & b e n
=> gcd(a,b) e n & Div(gcd(a,b),a) & Div(gcd(a,b),b)
& ALL(d):[d e n & Div(d,a) & Div(d,b) => d<=gcd(a,b)]]
Axiom
Define: qpos The set of positive rational numbers
23 Set(qpos)
Axiom
24 ALL(a):[a e qpos
=> EXIST(b):EXIST(c):[b e n & c e n & a=b/c]]
Axiom
Define: / operator
25 ALL(a):ALL(b):[a e n & b e n
=> a/b e qpos
& ALL(d):ALL(e):[d e n & e e n => [(d,e) e a/b <=> a*e=d*b]]]
Axiom
Equality on qpos
26 ALL(a):ALL(b):ALL(c):ALL(d):[a e n & b e n & c e n & d e n & a/b e qpos & c/d e qpos
=> [a/b=c/d <=> a*d=c*b]]
Axiom
Define: * on qpos qMult3.proof
27 ALL(a):ALL(b):ALL(c):ALL(d):[a e n & b e n & c e n & d e n & a/b e qpos & c/d e qpos
=> a/b*(c/d)=a*c/(b*d)]
Axiom
Previous result: Existence of lowest terms LowestTerms2.proof
28 ALL(a):ALL(b):[a e n & b e n
=> EXIST(c):EXIST(d):[c e n & d e n & [a/b=c/d & gcd(c,d)=1]]]
Axiom
Proof
-----
Prove: ALL(a):~[a e qpos & a*a=2/1]
Suppose to the contrary...
29 x e qpos & x*x=2/1
Premise
30 x e qpos
Split, 29
31 x*x=2/1
Split, 29
Apply definition of qpos
32 x e qpos
=> EXIST(b):EXIST(c):[b e n & c e n & x=b/c]
U Spec, 24
33 EXIST(b):EXIST(c):[b e n & c e n & x=b/c]
Detach, 32, 30
34 EXIST(c):[x1 e n & c e n & x=x1/c]
E Spec, 33
Define: x1, x2
35 x1 e n & x2 e n & x=x1/x2
E Spec, 34
36 x1 e n
Split, 35
37 x2 e n
Split, 35
38 x=x1/x2
Split, 35
Apply previous result (existence of lowest terms)
39 ALL(b):[x1 e n & b e n
=> EXIST(c):EXIST(d):[c e n & d e n & [x1/b=c/d & gcd(c,d)=1]]]
U Spec, 28
40 x1 e n & x2 e n
=> EXIST(c):EXIST(d):[c e n & d e n & [x1/x2=c/d & gcd(c,d)=1]]
U Spec, 39
41 x1 e n & x2 e n
Join, 36, 37
42 EXIST(c):EXIST(d):[c e n & d e n & [x1/x2=c/d & gcd(c,d)=1]]
Detach, 40, 41
43 EXIST(d):[x1' e n & d e n & [x1/x2=x1'/d & gcd(x1',d)=1]]
E Spec, 42
44 x1' e n & x2' e n & [x1/x2=x1'/x2' & gcd(x1',x2')=1]
E Spec, 43
Define: x1', x2' (lowest terms)
45 x1' e n
Split, 44
46 x2' e n
Split, 44
47 x1/x2=x1'/x2' & gcd(x1',x2')=1
Split, 44
48 x1/x2=x1'/x2'
Split, 47
49 gcd(x1',x2')=1
Split, 47
Apply definition of gcd
50 ALL(b):[x1' e n & b e n
=> gcd(x1',b) e n & Div(gcd(x1',b),x1') & Div(gcd(x1',b),b)
& ALL(d):[d e n & Div(d,x1') & Div(d,b) => d<=gcd(x1',b)]]
U Spec, 22
51 x1' e n & x2' e n
=> gcd(x1',x2') e n & Div(gcd(x1',x2'),x1') & Div(gcd(x1',x2'),x2')
& ALL(d):[d e n & Div(d,x1') & Div(d,x2') => d<=gcd(x1',x2')]
U Spec, 50
52 x1' e n & x2' e n
Join, 45, 46
53 gcd(x1',x2') e n & Div(gcd(x1',x2'),x1') & Div(gcd(x1',x2'),x2')
& ALL(d):[d e n & Div(d,x1') & Div(d,x2') => d<=gcd(x1',x2')]
Detach, 51, 52
54 gcd(x1',x2') e n
Split, 53
55 Div(gcd(x1',x2'),x1')
Split, 53
56 Div(gcd(x1',x2'),x2')
Split, 53
57 ALL(d):[d e n & Div(d,x1') & Div(d,x2') => d<=gcd(x1',x2')]
Split, 53
58 x=x1'/x2'
Substitute, 48, 38
59 x1'/x2'*(x1'/x2')=2/1
Substitute, 58, 31
Apply definition of * on qpos
60 ALL(b):ALL(c):ALL(d):[x1' e n & b e n & c e n & d e n & x1'/b e qpos & c/d e qpos
=> x1'/b*(c/d)=x1'*c/(b*d)]
U Spec, 27
61 ALL(c):ALL(d):[x1' e n & x2' e n & c e n & d e n & x1'/x2' e qpos & c/d e qpos
=> x1'/x2'*(c/d)=x1'*c/(x2'*d)]
U Spec, 60
62 ALL(d):[x1' e n & x2' e n & x1' e n & d e n & x1'/x2' e qpos & x1'/d e qpos
=> x1'/x2'*(x1'/d)=x1'*x1'/(x2'*d)]
U Spec, 61
63 x1' e n & x2' e n & x1' e n & x2' e n & x1'/x2' e qpos & x1'/x2' e qpos
=> x1'/x2'*(x1'/x2')=x1'*x1'/(x2'*x2')
U Spec, 62
64 x1'/x2' e qpos
Substitute, 58, 30
65 x1' e n & x2' e n
Join, 45, 46
66 x1' e n & x2' e n & x1' e n
Join, 65, 45
67 x1' e n & x2' e n & x1' e n & x2' e n
Join, 66, 46
68 x1' e n & x2' e n & x1' e n & x2' e n
& x1'/x2' e qpos
Join, 67, 64
69 x1' e n & x2' e n & x1' e n & x2' e n
& x1'/x2' e qpos
& x1'/x2' e qpos
Join, 68, 64
70 x1'/x2'*(x1'/x2')=x1'*x1'/(x2'*x2')
Detach, 63, 69
71 x1'*x1'/(x2'*x2')=2/1
Substitute, 70, 59
Apply equality on qpos
72 ALL(b):ALL(c):ALL(d):[x1'*x1' e n & b e n & c e n & d e n & x1'*x1'/b e qpos & c/d e qpos
=> [x1'*x1'/b=c/d <=> x1'*x1'*d=c*b]]
U Spec, 26
73 ALL(c):ALL(d):[x1'*x1' e n & x2'*x2' e n & c e n & d e n & x1'*x1'/(x2'*x2') e qpos & c/d e qpos
=> [x1'*x1'/(x2'*x2')=c/d <=> x1'*x1'*d=c*(x2'*x2')]]
U Spec, 72
74 ALL(d):[x1'*x1' e n & x2'*x2' e n & 2 e n & d e n & x1'*x1'/(x2'*x2') e qpos & 2/d e qpos
=> [x1'*x1'/(x2'*x2')=2/d <=> x1'*x1'*d=2*(x2'*x2')]]
U Spec, 73
75 x1'*x1' e n & x2'*x2' e n & 2 e n & 1 e n & x1'*x1'/(x2'*x2') e qpos & 2/1 e qpos
=> [x1'*x1'/(x2'*x2')=2/1 <=> x1'*x1'*1=2*(x2'*x2')]
U Spec, 74
76 ALL(b):[x1' e n & b e n => x1'*b e n]
U Spec, 11
77 x1' e n & x1' e n => x1'*x1' e n
U Spec, 76
78 x1' e n & x1' e n
Join, 45, 45
79 x1'*x1' e n
Detach, 77, 78
80 ALL(b):[x2' e n & b e n => x2'*b e n]
U Spec, 11
81 x2' e n & x2' e n => x2'*x2' e n
U Spec, 80
82 x2' e n & x2' e n
Join, 46, 46
83 x2'*x2' e n
Detach, 81, 82
84 ALL(b):[x1'*x1' e n & b e n
=> x1'*x1'/b e qpos
& ALL(d):ALL(e):[d e n & e e n => [(d,e) e x1'*x1'/b <=> x1'*x1'*e=d*b]]]
U Spec, 25
85 x1'*x1' e n & x2'*x2' e n
=> x1'*x1'/(x2'*x2') e qpos
& ALL(d):ALL(e):[d e n & e e n => [(d,e) e x1'*x1'/(x2'*x2') <=> x1'*x1'*e=d*(x2'*x2')]]
U Spec, 84
86 x1'*x1' e n & x2'*x2' e n
Join, 79, 83
87 x1'*x1'/(x2'*x2') e qpos
& ALL(d):ALL(e):[d e n & e e n => [(d,e) e x1'*x1'/(x2'*x2') <=> x1'*x1'*e=d*(x2'*x2')]]
Detach, 85, 86
88 x1'*x1'/(x2'*x2') e qpos
Split, 87
89 ALL(d):ALL(e):[d e n & e e n => [(d,e) e x1'*x1'/(x2'*x2') <=> x1'*x1'*e=d*(x2'*x2')]]
Split, 87
90 ALL(b):[2 e n & b e n
=> 2/b e qpos
& ALL(d):ALL(e):[d e n & e e n => [(d,e) e 2/b <=> 2*e=d*b]]]
U Spec, 25
91 2 e n & 1 e n
=> 2/1 e qpos
& ALL(d):ALL(e):[d e n & e e n => [(d,e) e 2/1 <=> 2*e=d*1]]
U Spec, 90
92 2 e n & 1 e n
Join, 8, 2
93 2/1 e qpos
& ALL(d):ALL(e):[d e n & e e n => [(d,e) e 2/1 <=> 2*e=d*1]]
Detach, 91, 92
94 2/1 e qpos
Split, 93
95 ALL(d):ALL(e):[d e n & e e n => [(d,e) e 2/1 <=> 2*e=d*1]]
Split, 93
96 x1'*x1' e n & x2'*x2' e n
Join, 79, 83
97 x1'*x1' e n & x2'*x2' e n & 2 e n
Join, 96, 8
98 x1'*x1' e n & x2'*x2' e n & 2 e n & 1 e n
Join, 97, 2
99 x1'*x1' e n & x2'*x2' e n & 2 e n & 1 e n
& x1'*x1'/(x2'*x2') e qpos
Join, 98, 88
100 x1'*x1' e n & x2'*x2' e n & 2 e n & 1 e n
& x1'*x1'/(x2'*x2') e qpos
& 2/1 e qpos
Join, 99, 94
101 x1'*x1'/(x2'*x2')=2/1 <=> x1'*x1'*1=2*(x2'*x2')
Detach, 75, 100
102 [x1'*x1'/(x2'*x2')=2/1 => x1'*x1'*1=2*(x2'*x2')]
& [x1'*x1'*1=2*(x2'*x2') => x1'*x1'/(x2'*x2')=2/1]
Iff-And, 101
103 x1'*x1'/(x2'*x2')=2/1 => x1'*x1'*1=2*(x2'*x2')
Split, 102
104 x1'*x1'*1=2*(x2'*x2') => x1'*x1'/(x2'*x2')=2/1
Split, 102
105 x1'*x1'*1=2*(x2'*x2')
Detach, 103, 71
106 x1'*x1' e n => x1'*x1'*1=x1'*x1'
U Spec, 12
107 x1'*x1'*1=x1'*x1'
Detach, 106, 79
108 x1'*x1'=2*(x2'*x2')
Substitute, 107, 105
109 ALL(b):[2 e n & b e n => [Div(2,b) <=> EXIST(c):[c e n & b=2*c]]]
U Spec, 20
110 2 e n & x1'*x1' e n => [Div(2,x1'*x1') <=> EXIST(c):[c e n & x1'*x1'=2*c]]
U Spec, 109
111 2 e n & x1'*x1' e n
Join, 8, 79
112 Div(2,x1'*x1') <=> EXIST(c):[c e n & x1'*x1'=2*c]
Detach, 110, 111
113 [Div(2,x1'*x1') => EXIST(c):[c e n & x1'*x1'=2*c]]
& [EXIST(c):[c e n & x1'*x1'=2*c] => Div(2,x1'*x1')]
Iff-And, 112
114 Div(2,x1'*x1') => EXIST(c):[c e n & x1'*x1'=2*c]
Split, 113
115 EXIST(c):[c e n & x1'*x1'=2*c] => Div(2,x1'*x1')
Split, 113
116 x2'*x2' e n & x1'*x1'=2*(x2'*x2')
Join, 83, 108
117 EXIST(c):[c e n & x1'*x1'=2*c]
E Gen, 116
x1'*x1' is even
118 Div(2,x1'*x1')
Detach, 115, 117
Prove: Div(2,x1') x1' is even
Suppose to the contrary...
119 ~Div(2,x1')
Premise
120 ALL(b):[x1' e n & b e n & ~Div(2,x1') & ~Div(2,b) => ~Div(2,x1'*b)]
U Spec, 21
121 x1' e n & x1' e n & ~Div(2,x1') & ~Div(2,x1') => ~Div(2,x1'*x1')
U Spec, 120
122 x1' e n & x1' e n
Join, 45, 45
123 x1' e n & x1' e n & ~Div(2,x1')
Join, 122, 119
124 x1' e n & x1' e n & ~Div(2,x1') & ~Div(2,x1')
Join, 123, 119
125 ~Div(2,x1'*x1')
Detach, 121, 124
126 Div(2,x1'*x1') & ~Div(2,x1'*x1')
Join, 118, 125
As Required:
127 ~~Div(2,x1')
4 Conclusion, 119
x1' is even
128 Div(2,x1')
Rem DNeg, 127
129 ALL(b):[2 e n & b e n => [Div(2,b) <=> EXIST(c):[c e n & b=2*c]]]
U Spec, 20
130 2 e n & x1' e n => [Div(2,x1') <=> EXIST(c):[c e n & x1'=2*c]]
U Spec, 129
131 2 e n & x1' e n
Join, 8, 45
132 Div(2,x1') <=> EXIST(c):[c e n & x1'=2*c]
Detach, 130, 131
133 [Div(2,x1') => EXIST(c):[c e n & x1'=2*c]]
& [EXIST(c):[c e n & x1'=2*c] => Div(2,x1')]
Iff-And, 132
134 Div(2,x1') => EXIST(c):[c e n & x1'=2*c]
Split, 133
135 EXIST(c):[c e n & x1'=2*c] => Div(2,x1')
Split, 133
136 EXIST(c):[c e n & x1'=2*c]
Detach, 134, 128
Define: p
137 p e n & x1'=2*p
E Spec, 136
138 p e n
Split, 137
139 x1'=2*p
Split, 137
140 2*p*(2*p)=2*(x2'*x2')
Substitute, 139, 108
Prove: 2*(p*p)=x2'*x2'
Apply assciativity of *
141 ALL(b):ALL(c):[2 e n & b e n & c e n => 2*b*c=2*(b*c)]
U Spec, 14
142 ALL(c):[2 e n & p e n & c e n => 2*p*c=2*(p*c)]
U Spec, 141
143 2 e n & p e n & 2*p e n => 2*p*(2*p)=2*(p*(2*p))
U Spec, 142
144 ALL(b):[2 e n & b e n => 2*b e n]
U Spec, 11
145 2 e n & p e n => 2*p e n
U Spec, 144
146 2 e n & p e n
Join, 8, 138
147 2*p e n
Detach, 145, 146
148 2 e n & p e n
Join, 8, 138
149 2 e n & p e n & 2*p e n
Join, 148, 147
150 2*p*(2*p)=2*(p*(2*p))
Detach, 143, 149
151 2*(p*(2*p))=2*(x2'*x2')
Substitute, 150, 140
Apply left cancellability of *
152 ALL(b):ALL(c):[2 e n & b e n & c e n & 2*b=2*c => b=c]
U Spec, 17
153 ALL(c):[2 e n & p*(2*p) e n & c e n & 2*(p*(2*p))=2*c => p*(2*p)=c]
U Spec, 152
154 2 e n & p*(2*p) e n & x2'*x2' e n & 2*(p*(2*p))=2*(x2'*x2') => p*(2*p)=x2'*x2'
U Spec, 153
155 ALL(b):[p e n & b e n => p*b e n]
U Spec, 11
156 p e n & 2*p e n => p*(2*p) e n
U Spec, 155
157 p e n & 2*p e n
Join, 138, 147
158 p*(2*p) e n
Detach, 156, 157
159 2 e n & p*(2*p) e n
Join, 8, 158
160 2 e n & p*(2*p) e n & x2'*x2' e n
Join, 159, 83
161 2 e n & p*(2*p) e n & x2'*x2' e n
& 2*(p*(2*p))=2*(x2'*x2')
Join, 160, 151
162 p*(2*p)=x2'*x2'
Detach, 154, 161
Apply associativity of *
163 ALL(b):ALL(c):[p e n & b e n & c e n => p*b*c=p*(b*c)]
U Spec, 14
164 ALL(c):[p e n & 2 e n & c e n => p*2*c=p*(2*c)]
U Spec, 163
165 p e n & 2 e n & p e n => p*2*p=p*(2*p)
U Spec, 164
166 p e n & 2 e n
Join, 138, 8
167 p e n & 2 e n & p e n
Join, 166, 138
168 p*2*p=p*(2*p)
Detach, 165, 167
169 p*2*p=x2'*x2'
Substitute, 168, 162
Apply commutativity of *
170 ALL(b):[p e n & b e n => p*b=b*p]
U Spec, 15
171 p e n & 2 e n => p*2=2*p
U Spec, 170
172 p e n & 2 e n
Join, 138, 8
173 p*2=2*p
Detach, 171, 172
174 2*p*p=x2'*x2'
Substitute, 173, 169
175 ALL(b):ALL(c):[2 e n & b e n & c e n => 2*b*c=2*(b*c)]
U Spec, 14
176 ALL(c):[2 e n & p e n & c e n => 2*p*c=2*(p*c)]
U Spec, 175
177 2 e n & p e n & p e n => 2*p*p=2*(p*p)
U Spec, 176
178 2 e n & p e n
Join, 8, 138
179 2 e n & p e n & p e n
Join, 178, 138
180 2*p*p=2*(p*p)
Detach, 177, 179
As Required:
181 2*(p*p)=x2'*x2'
Substitute, 180, 174
Apply definiton of Div
182 ALL(b):[2 e n & b e n => [Div(2,b) <=> EXIST(c):[c e n & b=2*c]]]
U Spec, 20
183 2 e n & x2'*x2' e n => [Div(2,x2'*x2') <=> EXIST(c):[c e n & x2'*x2'=2*c]]
U Spec, 182
184 2 e n & x2'*x2' e n
Join, 8, 83
185 Div(2,x2'*x2') <=> EXIST(c):[c e n & x2'*x2'=2*c]
Detach, 183, 184
186 [Div(2,x2'*x2') => EXIST(c):[c e n & x2'*x2'=2*c]]
& [EXIST(c):[c e n & x2'*x2'=2*c] => Div(2,x2'*x2')]
Iff-And, 185
187 Div(2,x2'*x2') => EXIST(c):[c e n & x2'*x2'=2*c]
Split, 186
188 EXIST(c):[c e n & x2'*x2'=2*c] => Div(2,x2'*x2')
Split, 186
189 ALL(b):[p e n & b e n => p*b e n]
U Spec, 11
190 p e n & p e n => p*p e n
U Spec, 189
191 p e n & p e n
Join, 138, 138
192 p*p e n
Detach, 190, 191
193 x2'*x2'=2*(p*p)
Sym, 181
194 p*p e n & x2'*x2'=2*(p*p)
Join, 192, 193
195 EXIST(c):[c e n & x2'*x2'=2*c]
E Gen, 194
x2'*x2' is even
196 Div(2,x2'*x2')
Detach, 188, 195
Prove: Div(2,x2') x2' is even
Suppose to the contrary...
197 ~Div(2,x2')
Premise
198 ALL(b):[x2' e n & b e n & ~Div(2,x2') & ~Div(2,b) => ~Div(2,x2'*b)]
U Spec, 21
199 x2' e n & x2' e n & ~Div(2,x2') & ~Div(2,x2') => ~Div(2,x2'*x2')
U Spec, 198
200 x2' e n & x2' e n
Join, 46, 46
201 x2' e n & x2' e n & ~Div(2,x2')
Join, 200, 197
202 x2' e n & x2' e n & ~Div(2,x2') & ~Div(2,x2')
Join, 201, 197
203 ~Div(2,x2'*x2')
Detach, 199, 202
Obtain the contradiction...
204 Div(2,x2'*x2') & ~Div(2,x2'*x2')
Join, 196, 203
As Required:
205 ~~Div(2,x2')
4 Conclusion, 197
x2' is even
206 Div(2,x2')
Rem DNeg, 205
Apply previous result
207 2 e n & Div(2,x1') & Div(2,x2') => 2<=gcd(x1',x2')
U Spec, 57
208 2 e n & Div(2,x1')
Join, 8, 128
209 2 e n & Div(2,x1') & Div(2,x2')
Join, 208, 206
210 2<=gcd(x1',x2')
Detach, 207, 209
211 2<=1
Substitute, 49, 210
Apply previous result
212 ALL(b):[2 e n & b e n => [2<=b <=> ~b<2]]
U Spec, 19
213 2 e n & 1 e n => [2<=1 <=> ~1<2]
U Spec, 212
214 2 e n & 1 e n
Join, 8, 2
215 2<=1 <=> ~1<2
Detach, 213, 214
216 [2<=1 => ~1<2] & [~1<2 => 2<=1]
Iff-And, 215
217 2<=1 => ~1<2
Split, 216
218 ~1<2 => 2<=1
Split, 216
219 ~1<2
Detach, 217, 211
Apply definiton of <
220 ALL(b):[1 e n & b e n => [1<b <=> EXIST(c):[c e n & 1+c=b]]]
U Spec, 18
221 1 e n & 2 e n => [1<2 <=> EXIST(c):[c e n & 1+c=2]]
U Spec, 220
222 1 e n & 2 e n
Join, 2, 8
223 1<2 <=> EXIST(c):[c e n & 1+c=2]
Detach, 221, 222
224 [1<2 => EXIST(c):[c e n & 1+c=2]]
& [EXIST(c):[c e n & 1+c=2] => 1<2]
Iff-And, 223
225 1<2 => EXIST(c):[c e n & 1+c=2]
Split, 224
226 EXIST(c):[c e n & 1+c=2] => 1<2
Split, 224
227 1 e n & 1+1=2
Join, 2, 9
228 EXIST(c):[c e n & 1+c=2]
E Gen, 227
229 1<2
Detach, 226, 228
Obtain the contradiction...
230 1<2 & ~1<2
Join, 229, 219
231 ~EXIST(a):[a e qpos & a*a=2/1]
4 Conclusion, 29