Irreflexivity of Less Than Introduction ------------ Required to prove: ALL(a):[a ε n => ~a<a] Axioms for n, 1, + ------------------ 1 Set(n) Axiom 2 1 ε n Axiom Define: + 3 ALL(a):ALL(b):[a ε n & b ε n => a+b ε n] Axiom 4 ALL(a):[a ε n => ~a+1=1] Axiom 5 ALL(a):ALL(b):[a ε n & b ε n & a+1=b+1 => a=b] Axiom 6 ALL(a):ALL(b):[a ε n & b ε n => a+(b+1)=a+b+1] Axiom 7 ALL(a):[Set(a) & 1 ε a & ALL(b):[b ε n & b ε a => b+1 ε a] => ALL(b):[b ε n => b ε a]] Axiom Definitions ----------- Define: < 8 ALL(a):ALL(b):[a ε n & b ε n => [a<b <=> EXIST(c):[c ε n & a+c=b]]] Definition Previous Results ---------------- Associativity of + 9 ALL(a):ALL(b):ALL(c):[a ε n & b ε n & c ε n => a+b+c=a+(b+c)] Axiom Commutativity of + 10 ALL(a):ALL(b):[a ε n & b ε n => a+b=b+a] Axiom Proof ----- Apply Induction shortcut 11 ALL(b):[b ε n => ~1+b=1] & ALL(k):[k ε n & ALL(b):[b ε n => ~k+b=k] => ALL(b):[b ε n => ~k+1+b=k+1]] => ALL(k):[k ε n => ALL(b):[b ε n => ~k+b=k]] Induction Base Step --------- Prove: ALL(b):[b ε n => ~1+b=1] Suppose... 12 x ε n Premise Apply axiom 13 x ε n => ~x+1=1 U Spec, 4 14 ~x+1=1 Detach, 13, 12 Apply commutativity of + 15 ALL(b):[x ε n & b ε n => x+b=b+x] U Spec, 10 16 x ε n & 1 ε n => x+1=1+x U Spec, 15 17 x ε n & 1 ε n Join, 12, 2 18 x+1=1+x Detach, 16, 17 19 ~1+x=1 Substitute, 18, 14 Base Step --------- As Required: 20 ALL(b):[b ε n => ~1+b=1] Conclusion, 12 Inductive Step -------------- Prove: ALL(k):[k ε n & ALL(b):[b ε n => ~k+b=k] => ALL(b):[b ε n => ~k+1+b=k+1]] Suppose... 21 x ε n & ALL(b):[b ε n => ~x+b=x] Premise 22 x ε n Split, 21 23 ALL(b):[b ε n => ~x+b=x] Split, 21 Prove: ALL(b):[b ε n => ~x+1+b=x+1] Suppose... 24 y ε n Premise Prove: ~x+1+y=x+1 Suppose to the contrary... 25 x+1+y=x+1 Premise Apply premise 26 y ε n => ~x+y=x U Spec, 23 27 ~x+y=x Detach, 26, 24 Apply associativity 28 ALL(b):ALL(c):[x ε n & b ε n & c ε n => x+b+c=x+(b+c)] U Spec, 9 29 ALL(c):[x ε n & 1 ε n & c ε n => x+1+c=x+(1+c)] U Spec, 28 30 x ε n & 1 ε n & y ε n => x+1+y=x+(1+y) U Spec, 29 31 x ε n & 1 ε n Join, 22, 2 32 x ε n & 1 ε n & y ε n Join, 31, 24 33 x+1+y=x+(1+y) Detach, 30, 32 34 x+(1+y)=x+1 Substitute, 33, 25 Apply commutativity 35 ALL(b):[1 ε n & b ε n => 1+b=b+1] U Spec, 10 36 1 ε n & y ε n => 1+y=y+1 U Spec, 35 37 1 ε n & y ε n Join, 2, 24 38 1+y=y+1 Detach, 36, 37 39 x+(y+1)=x+1 Substitute, 38, 34 Apply associativity 40 ALL(b):ALL(c):[x ε n & b ε n & c ε n => x+b+c=x+(b+c)] U Spec, 9 41 ALL(c):[x ε n & y ε n & c ε n => x+y+c=x+(y+c)] U Spec, 40 42 x ε n & y ε n & 1 ε n => x+y+1=x+(y+1) U Spec, 41 43 x ε n & y ε n Join, 22, 24 44 x ε n & y ε n & 1 ε n Join, 43, 2 45 x+y+1=x+(y+1) Detach, 42, 44 46 x+y+1=x+1 Substitute, 45, 39 Apply axiom 47 ALL(b):[x+y ε n & b ε n & x+y+1=b+1 => x+y=b] U Spec, 5 48 x+y ε n & x ε n & x+y+1=x+1 => x+y=x U Spec, 47 49 ALL(b):[x ε n & b ε n => x+b ε n] U Spec, 3 50 x ε n & y ε n => x+y ε n U Spec, 49 51 x ε n & y ε n Join, 22, 24 52 x+y ε n Detach, 50, 51 53 x+y ε n & x ε n Join, 52, 22 54 x+y ε n & x ε n & x+y+1=x+1 Join, 53, 46 55 x+y=x Detach, 48, 54 Obtain contradiction... 56 x+y=x & ~x+y=x Join, 55, 27 As Required: 57 ~x+1+y=x+1 Conclusion, 25 As Required: 58 ALL(b):[b ε n => ~x+1+b=x+1] Conclusion, 24 Inductive Step -------------- As Required: 59 ALL(k):[k ε n & ALL(b):[b ε n => ~k+b=k] => ALL(b):[b ε n => ~k+1+b=k+1]] Conclusion, 21 Joining results... 60 ALL(b):[b ε n => ~1+b=1] & ALL(k):[k ε n & ALL(b):[b ε n => ~k+b=k] => ALL(b):[b ε n => ~k+1+b=k+1]] Join, 20, 59 By induction... 61 ALL(k):[k ε n => ALL(b):[b ε n => ~k+b=k]] Detach, 11, 60 Prove: ALL(a):ALL(b):[a ε n & b ε n => ~a+b=a] Suppose... 62 x ε n & y ε n Premise 63 x ε n Split, 62 64 y ε n Split, 62 Apply previous result... 65 x ε n => ALL(b):[b ε n => ~x+b=x] U Spec, 61 66 ALL(b):[b ε n => ~x+b=x] Detach, 65, 63 67 y ε n => ~x+y=x U Spec, 66 68 ~x+y=x Detach, 67, 64 As Required: 69 ALL(a):ALL(b):[a ε n & b ε n => ~a+b=a] Conclusion, 62 Prove: ALL(a):[a ε n => ~a<a] Suppose... 70 x ε n Premise Apply definition of < 71 ALL(b):[x ε n & b ε n => [x<b <=> EXIST(c):[c ε n & x+c=b]]] U Spec, 8 72 x ε n & x ε n => [x<x <=> EXIST(c):[c ε n & x+c=x]] U Spec, 71 73 x ε n & x ε n Join, 70, 70 74 x<x <=> EXIST(c):[c ε n & x+c=x] Detach, 72, 73 75 [x<x => EXIST(c):[c ε n & x+c=x]] & [EXIST(c):[c ε n & x+c=x] => x<x] Iff-And, 74 76 x<x => EXIST(c):[c ε n & x+c=x] Split, 75 77 EXIST(c):[c ε n & x+c=x] => x<x Split, 75 78 ~EXIST(c):[c ε n & x+c=x] => ~x<x Contra, 76 79 ~~ALL(c):~[c ε n & x+c=x] => ~x<x Quant, 78 80 ALL(c):~[c ε n & x+c=x] => ~x<x Rem DNeg, 79 81 ALL(c):~~[c ε n => ~x+c=x] => ~x<x Imply-And, 80 Sufficient for: ~x<x 82 ALL(c):[c ε n => ~x+c=x] => ~x<x Rem DNeg, 81 Prove: ALL(c):[c ε n => ~x+c=x] Suppose... 83 y ε n Premise 84 ALL(b):[x ε n & b ε n => ~x+b=x] U Spec, 69 85 x ε n & y ε n => ~x+y=x U Spec, 84 86 x ε n & y ε n Join, 70, 83 87 ~x+y=x Detach, 85, 86 88 ALL(c):[c ε n => ~x+c=x] Conclusion, 83 89 ~x<x Detach, 82, 88 As Required: 90 ALL(a):[a ε n => ~a<a] Conclusion, 70