Theorem

-------

 

~D | A & B => [J => ~A => [D => ~J]]

 

 

Notation

--------

 

~  = NOT-operator

&  = AND-operator

|  = OR-operator

=> = IMPLIES-operator

 

 

Color Code

----------

 

Black = statement

Gray  = rule used and line reference

Blue  = comment

 

 

The following proof was developed with the aid of DC Proof 2.0.

Download at http://www.dcproof.com  

 

 

Proof

-----

 

     Suppose...

 

      1     ~D | A & B

            Premise

 

         

          Prove: J => ~A => [D => ~J]

         

          Suppose...

 

            2     J => ~A

                  Premise

 

             

              Prove: D => ~J

             

              Suppose...

 

                  3     D

                        Premise

 

              Convert initial premise to an implication and remove ~~

 

                  4     ~~D => A & B

                        Imply-Or, 1

 

                  5     D => A & B

                        Rem DNeg, 4

 

              Obtain contrapositive rule on 2nd premise and remove ~~

 

                  6     ~~A => ~J

                        Contra, 2

 

                  7     A => ~J

                        Rem DNeg, 6

 

              Apply detachment rule

 

                  8     A & B

                        Detach, 5, 3

 

                  9     A

                        Split, 8

 

                  10    B

                        Split, 8

 

                  11    ~J

                        Detach, 7, 9

 

          As Required:

 

            12    D => ~J

                  4 Conclusion, 3

 

     As Required:

 

      13    J => ~A => [D => ~J]

            4 Conclusion, 2

 

As Required:

 

14    ~D | A & B => [J => ~A => [D => ~J]]

      4 Conclusion, 1