THEOREM

*******

 

    ~P & P => Q

 

PROOF

*****

 

    Suppose to the contrary...

 

      1     ~[~P & P => Q]

            Premise

 

    Apply Imply-And Rule   (previously justified here)

 

      2     ~~[~P & P & ~Q]

            Imply-And, 1

 

    Remove ~~

 

      3     ~P & P & ~Q

            Rem DNeg, 2

 

      4     ~P

            Split, 3

 

      5     P

            Split, 3

 

      6     ~Q

            Split, 3

 

    Obtain contradiction

 

      7     P & ~P

            Join, 5, 4

 

Apply Conclusion Rule  (Proof by contradiction)

 

8     ~~[~P & P => Q]

      4 Conclusion, 1

 

 

Remove ~~

 

As Required:

 

9     ~P & P => Q

      Rem DNeg, 8