THEOREM

*******

 

     ~P => [P => Q]

 

PROOF

*****

 

    Suppose to the contrary...

 

      1     ~[~P => [P => Q]]

            Premise

 

    Apply Imply-And Rule   (previously justified here)

 

      2     ~~[~P & ~[P => Q]]

            Imply-And, 1

 

      3     ~~[~P & ~~[P & ~Q]]

            Imply-And, 2

 

    Remove ~~

 

      4     ~P & ~~[P & ~Q]

            Rem DNeg, 3

 

    Apply Split Rule

 

      5     ~P & [P & ~Q]

            Rem DNeg, 4

 

      6     ~P

            Split, 5

 

      7     P & ~Q

            Split, 5

 

      8     P

            Split, 7

 

      9     ~Q

            Split, 7

 

    Obtain contradiction...

 

      10   P & ~P

            Join, 8, 6

 

Apply Conclusion Rule  (Proof by contradiction)

 

11   ~~[~P => [P => Q]]

      4 Conclusion, 1

 

 

Remove ~~

 

As Required:

 

12   ~P => [P => Q]

      Rem DNeg, 11