THEOREM

*******

 

     P => Q | ~Q

 

PROOF

*****

 

    Suppose to the contrary...

 

      1     ~[P => Q | ~Q]

            Premise

 

    Apply Imply-And Rule   (previously justified here)

 

      2     ~~[P & ~[Q | ~Q]]

            Imply-And, 1

 

    Apply De Morgan's Law

 

      3     ~~[P & ~~[~Q & ~~Q]]

            DeMorgan, 2

 

    Remove ~~

 

      4     P & ~~[~Q & ~~Q]

            Rem DNeg, 3

 

      5     P & [~Q & ~~Q]

            Rem DNeg, 4

 

      6     P & [~Q & Q]

            Rem DNeg, 5

 

      7     P

            Split, 6

 

    Obtain contradiction...

 

      8     ~Q & Q

            Split, 6

 

Apply Conclusion Rule  (Proof by contradiction)

 

9     ~~[P => Q | ~Q]

      4 Conclusion, 1

 

 

Remove ~~

 

As Required:

 

10   P => Q | ~Q

      Rem DNeg, 9