THEOREM

*******

 

     [A => B] | [B => C]

 

PROOF

*****

 

    Suppose to the contrary...

 

      1     ~[[A => B] | [B => C]]

            Premise

 

    Prove: A & ~B & [B & ~C]

   

    Apply Imply-And Rule for each '=>'   (previously justified here)

 

      2     ~[~[A & ~B] | [B => C]]

            Imply-And, 1

 

      3     ~[~[A & ~B] | ~[B & ~C]]

            Imply-And, 2

 

    Apply De Morgan' Law

 

      4     ~~[~~[A & ~B] & ~~[B & ~C]]

            DeMorgan, 3

 

    Remove each '~~'

 

      5     ~~[A & ~B] & ~~[B & ~C]

            Rem DNeg, 4

 

      6     A & ~B & ~~[B & ~C]

            Rem DNeg, 5

 

      7     A & ~B & [B & ~C]

            Rem DNeg, 6

 

    Apply Split Rule

 

      8     A

            Split, 7

 

      9     ~B

            Split, 7

 

      10   B & ~C

            Split, 7

 

      11   B

            Split, 10

 

      12   ~C

            Split, 10

 

    Obtain contradication...

 

      13   B & ~B

            Join, 11, 9

 

Apply Conclusion Rule  (Proof by contradiction)

 

14   ~~[[A => B] | [B => C]]

      4 Conclusion, 1

 

 

As Required:

 

15   [A => B] | [B => C]

      Rem DNeg, 14