THEOREM

*******

 

     ~[P => Q] => P & ~Q

 

PROOF

*****

 

    Suppose to the contrary...

 

      1     ~[~[P => Q] => P & ~Q]

            Premise

 

    Apply Imply-And Rule   (previously justified here)

 

      2     ~[~~[P & ~Q] => P & ~Q]

            Imply-And, 1

 

      3     ~~[~~[P & ~Q] & ~[P & ~Q]]

            Imply-And, 2

 

    Remove ~~

 

      4     ~~[P & ~Q] & ~[P & ~Q]

            Rem DNeg, 3

 

    Obtain contradiction...

 

      5     P & ~Q & ~[P & ~Q]

            Rem DNeg, 4

 

Apply Conclusion Rule  (Proof by contradiction)

 

6     ~~[~[P => Q] => P & ~Q]

      4 Conclusion, 1

 

 

Remove ~~

 

As Required:

 

7     ~[P => Q] => P & ~Q

      Rem DNeg, 6