THEOREM
*******
ALL(a):[EXIST(b):P(b) => P(a) <=> ALL(b):[P(b) => P(a)]]
This proof was written and verified with the aid of the author's DC Proof 2.0 software available at http://www.dcproof.com
PROOF
*****
'=>'
Prove: ALL(a):[EXIST(b):P(b) => P(a) => ALL(b):[P(b) => P(a)]]
Suppose...
1 EXIST(b):P(b) => P(y)
Premise
Prove: ALL(b):[P(b) => P(y)]
Suppose...
2 P(x)
Premise
3 EXIST(b):P(b)
E Gen, 2
4 P(y)
Detach, 1, 3
As Required:
5 ALL(b):[P(b) => P(y)]
4 Conclusion, 2
As Required:
6 ALL(a):[EXIST(b):P(b) => P(a) => ALL(b):[P(b) => P(a)]]
4 Conclusion, 1
'<='
Prove: ALL(a):[ALL(b):[P(b) => P(a)] => [EXIST(b):P(b) => P(a)]]
Suppose...
7 ALL(b):[P(b) => P(y)]
Premise
Prove: EXIST(b):P(b) => P(y)
Suppose...
8 EXIST(b):P(b)
Premise
9 P(x)
E Spec, 8
10 P(x) => P(y)
U Spec, 7
11 P(y)
Detach, 10, 9
As Required:
12 EXIST(b):P(b) => P(y)
4 Conclusion, 8
As Required:
13 ALL(a):[ALL(b):[P(b) => P(a)] => [EXIST(b):P(b) => P(a)]]
4 Conclusion, 7
Joining results...
14 ALL(a):[[EXIST(b):P(b) => P(a) => ALL(b):[P(b) => P(a)]]
& [ALL(b):[P(b) => P(a)] => [EXIST(b):P(b) => P(a)]]]
Join, 6, 13
As Required:
15 ALL(a):[EXIST(b):P(b) => P(a)
<=> ALL(b):[P(b) => P(a)]]
Iff-And, 14