Suppose...

 

1     ALL(a):[a e x => a e u]

     & ALL(a):[a e y => a e u]

     & ALL(a):[a e x' <=> a e u & ~a e x]

     & ALL(a):[a e y' <=> a e u & ~a e y]

      Premise

 

x is a subset of u

 

2     ALL(a):[a e x => a e u]

      Split, 1

 

y is a subset of u

 

3     ALL(a):[a e y => a e u]

      Split, 1

 

x' is the complement of x wrt u

 

4     ALL(a):[a e x' <=> a e u & ~a e x]

      Split, 1

 

y' is the complement of y wrt u

 

5     ALL(a):[a e y' <=> a e u & ~a e y]

      Split, 1

 

    

     '=>'

    

     Prove: ALL(a):[a e x => a e y] => ALL(a):[a e y' => a e x']

    

     Suppose...

 

      6     ALL(a):[a e x => a e y]

            Premise

 

          Prove: ALL(a):[a e y' => a e x']

         

          Suppose...

 

            7     p e y'

                  Premise

 

          Apply definition of y'

 

            8     p e y' <=> p e u & ~p e y

                  U Spec, 5

 

          Apply Iff-And Rule

 

            9     [p e y' => p e u & ~p e y] & [p e u & ~p e y => p e y']

                  Iff-And, 8

 

            10    p e y' => p e u & ~p e y

                  Split, 9

 

            11    p e u & ~p e y => p e y'

                  Split, 9

 

          Apply Detachment Rule

 

            12    p e u & ~p e y

                  Detach, 10, 7

 

            13    p e u

                  Split, 12

 

            14    ~p e y

                  Split, 12

 

          Apply definition of x'

 

            15    p e x' <=> p e u & ~p e x

                  U Spec, 4

 

          Apply Iff-And Rule

 

            16    [p e x' => p e u & ~p e x] & [p e u & ~p e x => p e x']

                  Iff-And, 15

 

            17    p e x' => p e u & ~p e x

                  Split, 16

 

          Sufficient: For  p e x'

 

            18    p e u & ~p e x => p e x'

                  Split, 16

 

          Apply premise

 

            19    p e x => p e y

                  U Spec, 6

 

          Apply Contrapostive Rule

 

            20    ~p e y => ~p e x

                  Contra, 19

 

          Apply Detachment Rule

 

            21    ~p e x

                  Detach, 20, 14

 

            22    p e u & ~p e x

                  Join, 13, 21

 

          Apply Detachment Rule

 

            23    p e x'

                  Detach, 18, 22

 

     As Required:

 

      24    ALL(a):[a e y' => a e x']

            4 Conclusion, 7

 

'=>'

 

As Required:

 

25    ALL(a):[a e x => a e y] => ALL(a):[a e y' => a e x']

      4 Conclusion, 6

 

    

     '<='

    

     Prove: ALL(a):[a e y' => a e x'] => ALL(a):[a e x => a e y]

    

     Suppose...

 

      26    ALL(a):[a e y' => a e x']

            Premise

 

          Prove: ALL(a):[a e x => a e y]

         

          Suppose...

 

            27    p e x

                  Premise

 

          Apply definition of x'

 

            28    p e x' <=> p e u & ~p e x

                  U Spec, 4

 

          Apply Iff-And Rule

 

            29    [p e x' => p e u & ~p e x] & [p e u & ~p e x => p e x']

                  Iff-And, 28

 

            30    p e x' => p e u & ~p e x

                  Split, 29

 

            31    p e u & ~p e x => p e x'

                  Split, 29

 

          Apply Contrapositive Rule

 

            32    ~[p e u & ~p e x] => ~p e x'

                  Contra, 30

 

          Apply DeMorgan Rule

 

            33    ~~[~p e u | ~~p e x] => ~p e x'

                  DeMorgan, 32

 

          Remove '~~'

 

            34    ~p e u | ~~p e x => ~p e x'

                  Rem DNeg, 33

 

            35    ~p e u | p e x => ~p e x'

                  Rem DNeg, 34

 

          Apply Arbitrary-Or Rule

 

            36    ~p e u | p e x

                  Arb Or, 27

 

          Apply Detachment Rule

 

            37    ~p e x'

                  Detach, 35, 36

 

          Apply definition of y'

 

            38    p e y' <=> p e u & ~p e y

                  U Spec, 5

 

          Apply Iff-And Rule

 

            39    [p e y' => p e u & ~p e y] & [p e u & ~p e y => p e y']

                  Iff-And, 38

 

            40    p e y' => p e u & ~p e y

                  Split, 39

 

            41    p e u & ~p e y => p e y'

                  Split, 39

 

          Apply premise

 

            42    p e y' => p e x'

                  U Spec, 26

 

          Apply Contrapositive Rule

 

            43    ~p e x' => ~p e y'

                  Contra, 42

 

          Apply Detachment Rule

 

            44    ~p e y'

                  Detach, 43, 37

 

          Apply Contrapositive Rule

 

            45    ~p e y' => ~[p e u & ~p e y]

                  Contra, 41

 

          Apply Detachment Rule

 

            46    ~[p e u & ~p e y]

                  Detach, 45, 44

 

          Apply Imply-And Rule

 

            47    ~~[p e u => ~~p e y]

                  Imply-And, 46

 

          Remove '~~'

 

            48    p e u => ~~p e y

                  Rem DNeg, 47

 

            49    p e u => p e y

                  Rem DNeg, 48

 

          Apply definition of x

 

            50    p e x => p e u

                  U Spec, 2

 

          Apply Detachment Rule

 

            51    p e u

                  Detach, 50, 27

 

            52    p e y

                  Detach, 49, 51

 

     As Required:

 

      53    ALL(a):[a e x => a e y]

            4 Conclusion, 27

 

'<='

 

As Required:

 

54    ALL(a):[a e y' => a e x'] => ALL(a):[a e x => a e y]

      4 Conclusion, 26

 

55    [ALL(a):[a e x => a e y] => ALL(a):[a e y' => a e x']]

     & [ALL(a):[a e y' => a e x'] => ALL(a):[a e x => a e y]]

      Join, 25, 54

 

As Required:

 

56    ALL(a):[a e x => a e y] <=> ALL(a):[a e y' => a e x']

      Iff-And, 55