Response to Naive Set Theory Question (sci.math) Theorem: If setA is a non-empty set, and setx is the singleton containing only x, and setA is contained in (i.e. a subset of) setx, then setA=setx Outline: Show p ε setA <=> p ε setx '=>' Suppose p ε setA. Since setA is contained in setx, we have p ε setx. '<=' Now, suppose p ε setx. By the definition of setx, we have p=x. Let q ε setA. Since setA is contained in setx, we have q ε setx. By the definition of setx, we have q=x. Substituting, we have p=q and p ε setA. Formal Proof: Suppose setA is a non-empty set, and setx is the singleton containing only x, and setA is contained in setx. 1 Set(setA) & EXIST(a):a ε setA & Set(setx) & ALL(a):[a ε setx <=> a=x] & ALL(a):[a ε setA => a ε setx] Premise 2 Set(setA) Split, 1 3 EXIST(a):a ε setA Split, 1 4 Set(setx) Split, 1 5 ALL(a):[a ε setx <=> a=x] Split, 1 6 ALL(a):[a ε setA => a ε setx] Split, 1 Applying set axiom... 7 ALL(a):ALL(b):[Set(a) & Set(b) => [a=b <=> ALL(c):[c ε a <=> c ε b]]] Set Equality 8 ALL(b):[Set(setA) & Set(b) => [setA=b <=> ALL(c):[c ε setA <=> c ε b]]] U Spec, 7 9 Set(setA) & Set(setx) => [setA=setx <=> ALL(c):[c ε setA <=> c ε setx]] U Spec, 8 10 Set(setA) & Set(setx) Join, 2, 4 11 setA=setx <=> ALL(c):[c ε setA <=> c ε setx] Detach, 9, 10 12 [setA=setx => ALL(c):[c ε setA <=> c ε setx]] & [ALL(c):[c ε setA <=> c ε setx] => setA=setx] Iff-And, 11 13 setA=setx => ALL(c):[c ε setA <=> c ε setx] Split, 12 Sufficient: For setA=setx 14 ALL(c):[c ε setA <=> c ε setx] => setA=setx Split, 12 '=>' Prove: p ε setA => p ε setx Suppose... 15 p ε setA Premise Applying definition of setx... 16 p ε setx <=> p=x U Spec, 5 17 [p ε setx => p=x] & [p=x => p ε setx] Iff-And, 16 18 p ε setx => p=x Split, 17 Sufficient: For p ε setx 19 p=x => p ε setx Split, 17 Since setA is contained in setx... 20 p ε setA => p ε setx U Spec, 6 21 p ε setx Detach, 20, 15 '=>' As Required: 22 p ε setA => p ε setx Conclusion, 15 '<=' Prove: p ε setx => p ε setA Suppose... 23 p ε setx Premise Applying definition of setx... 24 p ε setx <=> p=x U Spec, 5 25 [p ε setx => p=x] & [p=x => p ε setx] Iff-And, 24 26 p ε setx => p=x Split, 25 27 p=x => p ε setx Split, 25 28 p=x Detach, 26, 23 Let q be such that... 29 q ε setA E Spec, 3 Since setA is contained in setx... 30 q ε setA => q ε setx U Spec, 6 31 q ε setx Detach, 30, 29 Applying the definition of setx... 32 q ε setx <=> q=x U Spec, 5 33 [q ε setx => q=x] & [q=x => q ε setx] Iff-And, 32 34 q ε setx => q=x Split, 33 35 q=x => q ε setx Split, 33 36 q=x Detach, 34, 31 Substituting... 37 p=q Substitute, 36, 28 38 p ε setA Substitute, 37, 29 As Required: 39 p ε setx => p ε setA Conclusion, 23 Combining results... 40 [p ε setA => p ε setx] & [p ε setx => p ε setA] Join, 22, 39 41 p ε setA <=> p ε setx Iff-And, 40 Generalizing... 42 ALL(c):[c ε setA <=> c ε setx] U Gen, 41 As Required: 43 setA=setx Detach, 14, 42