THEOREM

*******

 

      ALL(a):[a e n => ~s(a)=a]

 

Where n = the set of natural numbers, s() is the successor function on n as defined below.

 

 

PEANO'S AXIOMS

**************

 

1     Set(n)

      Axiom

 

2     0 e n

      Axiom

 

3     ALL(a):[a e n => s(a) e n]

      Axiom

 

4     ALL(a):ALL(b):[a e n & b e n => [s(a)=s(b) => a=b]]

      Axiom

 

5     ALL(a):[a e n => ~s(a)=0]

      Axiom

 

6     ALL(a):[Set(a) & ALL(b):[b e a => b e n]

    => [0 e a & ALL(b):[b e a => s(b) e a]

    => ALL(b):[b e n => b e a]]]

      Axiom

 

 

PROOF BY INDUCTION

******************

 

Construct p

 

Apply the Subset Axiom

 

7     EXIST(sub):[Set(sub) & ALL(a):[a e sub <=> a e n & ~s(a)=a]]

      Subset, 1

 

8     Set(p) & ALL(a):[a e p <=> a e n & ~s(a)=a]

      E Spec, 7

 

 

Define: p

 

9     Set(p)

      Split, 8

 

10   ALL(a):[a e p <=> a e n & ~s(a)=a]

      Split, 8

 

Apply Induction Axiom

 

11   Set(p) & ALL(b):[b e p => b e n]

    => [0 e p & ALL(b):[b e p => s(b) e p]

    => ALL(b):[b e n => b e p]]

      U Spec, 6

 

   

    Prove: ALL(b):[b e p => b e n]

   

    Suppose...

 

      12   x e p

            Premise

 

    Apply definition of p

 

      13   x e p <=> x e n & ~s(x)=x

            U Spec, 10

 

      14   [x e p => x e n & ~s(x)=x] & [x e n & ~s(x)=x => x e p]

            Iff-And, 13

 

      15   x e p => x e n & ~s(x)=x

            Split, 14

 

      16   x e n & ~s(x)=x => x e p

            Split, 14

 

      17   x e n & ~s(x)=x

            Detach, 15, 12

 

      18   x e n

            Split, 17

 

As Required:

 

19   ALL(b):[b e p => b e n]

      4 Conclusion, 12

 

Joining results...

 

20   Set(p) & ALL(b):[b e p => b e n]

      Join, 9, 19

 

Sufficient: For  ALL(b):[b e n => b e p]

 

21   0 e p & ALL(b):[b e p => s(b) e p]

    => ALL(b):[b e n => b e p]

      Detach, 11, 20

 

 

BASE CASE

*********

 

Prove: 0 e p

 

Apply definition of p

 

22   0 e p <=> 0 e n & ~s(0)=0

      U Spec, 10

 

23   [0 e p => 0 e n & ~s(0)=0] & [0 e n & ~s(0)=0 => 0 e p]

      Iff-And, 22

 

24   0 e p => 0 e n & ~s(0)=0

      Split, 23

 

Sufficient: For 0 e p

 

25   0 e n & ~s(0)=0 => 0 e p

      Split, 23

 

Apply axiom

 

26   0 e n => ~s(0)=0

      U Spec, 5

 

27   ~s(0)=0

      Detach, 26, 2

 

28   0 e n & ~s(0)=0

      Join, 2, 27

 

As Required:

 

29   0 e p

      Detach, 25, 28

 

   

    INDUCTIVE STEP

    **************

 

Prove: ALL(b):[b e p => s(b) e p]

   

    Suppose...

 

      30   y e p

            Premise

 

    Apply definition of p

 

      31   y e p <=> y e n & ~s(y)=y

            U Spec, 10

 

      32   [y e p => y e n & ~s(y)=y] & [y e n & ~s(y)=y => y e p]

            Iff-And, 31

 

      33   y e p => y e n & ~s(y)=y

            Split, 32

 

      34   y e n & ~s(y)=y => y e p

            Split, 32

 

      35   y e n & ~s(y)=y

            Detach, 33, 30

 

      36   y e n

            Split, 35

 

      37   ~s(y)=y

            Split, 35

 

        

         Prove: ~~s(y) e p

        

         Suppose to the contrary...

 

            38   ~s(y) e p

                  Premise

 

         Apply axiom

 

            39   y e n => s(y) e n

                  U Spec, 3

 

            40   s(y) e n

                  Detach, 39, 36

 

         Apply definition of p

 

            41   s(y) e p <=> s(y) e n & ~s(s(y))=s(y)

                  U Spec, 10, 40

 

            42   [s(y) e p => s(y) e n & ~s(s(y))=s(y)]

             & [s(y) e n & ~s(s(y))=s(y) => s(y) e p]

                  Iff-And, 41

 

            43   s(y) e p => s(y) e n & ~s(s(y))=s(y)

                  Split, 42

 

            44   s(y) e n & ~s(s(y))=s(y) => s(y) e p

                  Split, 42

 

            45   ~s(y) e p => ~[s(y) e n & ~s(s(y))=s(y)]

                  Contra, 44

 

            46   ~[s(y) e n & ~s(s(y))=s(y)]

                  Detach, 45, 38

 

            47   ~~[s(y) e n => ~~s(s(y))=s(y)]

                  Imply-And, 46

 

            48   s(y) e n => ~~s(s(y))=s(y)

                  Rem DNeg, 47

 

            49   s(y) e n => s(s(y))=s(y)

                  Rem DNeg, 48

 

            50   s(s(y))=s(y)

                  Detach, 49, 40

 

         Apply axiom

 

            51   ALL(b):[y e n & b e n => [s(y)=s(b) => y=b]]

                  U Spec, 4

 

            52   ALL(b):[y e n & b e n => [s(y)=s(b) => y=b]]

                  U Spec, 4

 

            53   y e n & s(y) e n => [s(y)=s(s(y)) => y=s(y)]

                  U Spec, 52, 40

 

            54   y e n & s(y) e n

                  Join, 36, 40

 

            55   s(y)=s(s(y)) => y=s(y)

                  Detach, 53, 54

 

            56   s(y)=s(s(y))

                  Sym, 50

 

            57   y=s(y)

                  Detach, 55, 56

 

            58   s(y)=y

                  Sym, 57

 

         Obtain the contradiction...

 

            59   s(y)=y & ~s(y)=y

                  Join, 58, 37

 

    As Required:

 

      60   ~~s(y) e p

            4 Conclusion, 38

 

    As Required:

 

      61   s(y) e p

            Rem DNeg, 60

 

As Required:

 

62   ALL(b):[b e p => s(b) e p]

      4 Conclusion, 30

 

 

Joining results...

 

63   0 e p & ALL(b):[b e p => s(b) e p]

      Join, 29, 62

 

As Required:

 

64   ALL(b):[b e n => b e p]

      Detach, 21, 63

 

   

    Prove: ALL(a):[a e n => ~s(a)=a]

   

    Suppose...

 

      65   z e n

            Premise

 

      66   z e n => z e p

            U Spec, 64

 

      67   z e p

            Detach, 66, 65

 

    Apply definition of p

 

      68   z e p <=> z e n & ~s(z)=z

            U Spec, 10

 

      69   [z e p => z e n & ~s(z)=z] & [z e n & ~s(z)=z => z e p]

            Iff-And, 68

 

      70   z e p => z e n & ~s(z)=z

            Split, 69

 

      71   z e n & ~s(z)=z => z e p

            Split, 69

 

      72   z e n & ~s(z)=z

            Detach, 70, 67

 

      73   z e n

            Split, 72

 

      74   ~s(z)=z

            Split, 72

 

As Required:

 

75   ALL(a):[a e n => ~s(a)=a]

      4 Conclusion, 65