Ordered Field Axioms Following (lines 1 through 5) are the axioms for an ordered field (f,+,0,*1) Field axioms Where: _x = the additive inverse of x 1/x = the multiplicative inverse of x 1 Set(f) & ALL(a):ALL(b):[a f & b f => a+b f] & ALL(a):ALL(b):ALL(c):[a f & b f & c f => a+b+c=a+(b+c)] & ALL(a):ALL(b):[a r & b f => a+b=b+a] & 0 f & ALL(a):[a f => a+0=a] & ALL(a):[a f => _a f] & ALL(a):[a f => a+_a=0] & ALL(a):ALL(b):[a f & b f => a*b f] & ALL(a):ALL(b):ALL(c):[a f & b f & c f => a*b*c=a*(b*c)] & ALL(a):ALL(b):[a f & b f => a*b=b*a] & ALL(a):ALL(b):ALL(c):[a f & b f & c f => a*(b+c)=a*b+a*c] & 1 f & ~0=1 & ALL(a):[a f => a*1=a] & ALL(a):[a f & ~a=0 => 1/a f] & ALL(a):[a f => a*(1/a)=1] Premise Trichotomy for < 2 ALL(a):ALL(b):[a f & b f => [a<b | b<a | a=b] & ~[a<b & b<a] & ~[a<b & a=b] & ~[b<a & a=b]] Premise Associativity of < 3 ALL(a):ALL(b):ALL(c):[a f & b f & c f & a<b & b<c => a<c] Premise Additivity of < 4 ALL(a):ALL(b):[a f & b f & a<b => ALL(c):[c f => a+c<b+c]] Premise Multiplicativity of < 5 ALL(a):ALL(b):[a f & b f & a<b => ALL(c):[c f & 0<c => a*c<b*c] & ALL(c):[c f & c<0 => b*c<a*c]] Premise