Some Simple Results from the Ordered Field Axioms Introduction: From the axioms for an ordered field (f,+,0,*,1), we obtain the following results: 1. _0=0 2. ALL(a):[a f => [0<a <=> a pos]] 3. ALL(a):[a f => [a<0 <=> _a pos]] 4. ALL(a):[a f => _(_a)=a] 5. ALL(a):[a f & 0<a => _a<0] 6. ALL(a):[a f & a<0 => 0<_a] Where: pos = the set of positive elements of f _x = the additive inverse of x The Field Axioms: 1 Set(f) & ALL(a):ALL(b):[a f & b f => a+b f] & ALL(a):ALL(b):ALL(c):[a f & b f & c f => a+b+c=a+(b+c)] & ALL(a):ALL(b):[a f & b f => a+b=b+a] & 0 f & ALL(a):[a f => a+0=a] & ALL(a):[a f => _a f] & ALL(a):[a f => a+_a=0] & ALL(a):ALL(b):[a f & b f => a*b f] & ALL(a):ALL(b):ALL(c):[a f & b f & c f => a*b*c=a*(b*c)] & ALL(a):ALL(b):[a f & b f => a*b=b*a] & ALL(a):ALL(b):ALL(c):[a f & b f & c f => a*(b+c)=a*b+a*c] & 1 f & ~0=1 & ALL(a):[a f => a*1=a] & ALL(a):[a f & ~a=0 => 1/a f] & ALL(a):[a f => a*(1/a)=1] Premise Splitting out individual axioms... f is a set 2 Set(f) Split, 1 Define: + operator on f 3 ALL(a):ALL(b):[a f & b f => a+b f] Split, 1 + is associative 4 ALL(a):ALL(b):ALL(c):[a f & b f & c f => a+b+c=a+(b+c)] Split, 1 + is commutative 5 ALL(a):ALL(b):[a f & b f => a+b=b+a] Split, 1 Define: 0 6 0 f Split, 1 7 ALL(a):[a f => a+0=a] Split, 1 Define: _ operator on f 8 ALL(a):[a f => _a f] Split, 1 9 ALL(a):[a f => a+_a=0] Split, 1 Define: * operator on f 10 ALL(a):ALL(b):[a f & b f => a*b f] Split, 1 * is associative 11 ALL(a):ALL(b):ALL(c):[a f & b f & c f => a*b*c=a*(b*c)] Split, 1 * is commutative 12 ALL(a):ALL(b):[a f & b f => a*b=b*a] Split, 1 * is distributive over + 13 ALL(a):ALL(b):ALL(c):[a f & b f & c f => a*(b+c)=a*b+a*c] Split, 1 Define: 1 14 1 f Split, 1 15 ~0=1 Split, 1 16 ALL(a):[a f => a*1=a] Split, 1 Define: 1/ operator 17 ALL(a):[a f & ~a=0 => 1/a f] Split, 1 18 ALL(a):[a f => a*(1/a)=1] Split, 1 The Order Axioms: 19 Set(pos) & ALL(a):[a pos => a f] & ALL(a):[a f => [a=0 | a pos | _a pos] & ~[a=0 & a pos] & ~[a=0 & _a pos] & ~[a pos & _a pos]] & ALL(a):ALL(b):[a f & b f & a pos & b pos => a+b pos] & ALL(a):ALL(b):[a f & b f & a pos & b pos => a*b pos] & ALL(a):ALL(b):[a f & b f => [a<b <=> b+_a pos]] & ALL(a):ALL(b):[a f & b f => [a>b <=> b<a]] & ALL(a):ALL(b):[a f & b f => [a<=b <=> a<b | a=b]] & ALL(a):ALL(b):[a f & b f => [a>=b <=> a>b | a=b]] Premise Splitting out individual axioms... pos is the subset of positive elements in f 20 Set(pos) Split, 19 21 ALL(a):[a pos => a f] Split, 19 Trichotomy 22 ALL(a):[a f => [a=0 | a pos | _a pos] & ~[a=0 & a pos] & ~[a=0 & _a pos] & ~[a pos & _a pos]] Split, 19 Closure under + 23 ALL(a):ALL(b):[a f & b f & a pos & b pos => a+b pos] Split, 19 Closure under * 24 ALL(a):ALL(b):[a f & b f & a pos & b pos => a*b pos] Split, 19 Define: < 25 ALL(a):ALL(b):[a f & b f => [a<b <=> b+_a pos]] Split, 19 Prove: _0=0 26 0 f => 0+_0=0 U Spec, 9 27 0+_0=0 Detach, 26, 6 28 ALL(b):[0 f & b f => 0+b=b+0] U Spec, 5 29 0 f & _0 f => 0+_0=_0+0 U Spec, 28 30 0 f => _0 f U Spec, 8 31 _0 f Detach, 30, 6 32 0 f & _0 f Join, 6, 31 33 0+_0=_0+0 Detach, 29, 32 34 _0+0=0 Substitute, 33, 27 35 _0 f => _0+0=_0 U Spec, 7 36 _0+0=_0 Detach, 35, 31 37 0 f => 0+_0=0 U Spec, 9 38 0+_0=0 Detach, 37, 6 39 ALL(b):[0 f & b f => 0+b=b+0] U Spec, 5 40 0 f & _0 f => 0+_0=_0+0 U Spec, 39 41 0 f => _0 f U Spec, 8 42 _0 f Detach, 41, 6 43 0 f & _0 f Join, 6, 42 44 0+_0=_0+0 Detach, 40, 43 45 _0+0=0 Substitute, 44, 38 46 _0 f => _0+0=_0 U Spec, 7 47 _0+0=_0 Detach, 46, 42 Theorem 1: 48 _0=0 Substitute, 47, 45 Prove: x f => [0<x <=> x pos] Suppose... 49 x f Premise 50 ALL(b):[0 f & b f => [0<b <=> b+_0 pos]] U Spec, 25 51 0 f & x f => [0<x <=> x+_0 pos] U Spec, 50 52 0 f & x f Join, 6, 49 53 0<x <=> x+_0 pos Detach, 51, 52 54 0<x <=> x+0 pos Substitute, 48, 53 55 x f => x+0=x U Spec, 7 56 x+0=x Detach, 55, 49 57 0<x <=> x pos Substitute, 56, 54 As Required: 58 x f => [0<x <=> x pos] Conclusion, 49 Theorem 2: 59 ALL(a):[a f => [0<a <=> a pos]] U Gen, 58 Prove: x f => [x<0 <=> _x pos] Suppose... 60 x f Premise 61 ALL(b):[x f & b f => [x<b <=> b+_x pos]] U Spec, 25 62 x f & 0 f => [x<0 <=> 0+_x pos] U Spec, 61 63 x f & 0 f Join, 60, 6 64 x<0 <=> 0+_x pos Detach, 62, 63 65 ALL(b):[0 f & b f => 0+b=b+0] U Spec, 5 66 0 f & _x f => 0+_x=_x+0 U Spec, 65 67 x f => _x f U Spec, 8 68 _x f Detach, 67, 60 69 0 f & _x f Join, 6, 68 70 0+_x=_x+0 Detach, 66, 69 71 x<0 <=> _x+0 pos Substitute, 70, 64 72 _x f => _x+0=_x U Spec, 7 73 _x+0=_x Detach, 72, 68 74 x<0 <=> _x pos Substitute, 73, 71 As Required: 75 x f => [x<0 <=> _x pos] Conclusion, 60 Theorem 3: 76 ALL(a):[a f => [a<0 <=> _a pos]] U Gen, 75 Prove: x f => _(_x)=x Suppose... 77 x f Premise 78 _x f => _x+_(_x)=0 U Spec, 9 79 x f => _x f U Spec, 8 80 _x f Detach, 79, 77 81 _x+_(_x)=0 Detach, 78, 80 82 x+0=x+0 Reflex 83 x+(_x+_(_x))=x+0 Substitute, 81, 82 84 x f => x+0=x U Spec, 7 85 x+0=x Detach, 84, 77 86 x+(_x+_(_x))=x Substitute, 85, 83 87 ALL(b):ALL(c):[x f & b f & c f => x+b+c=x+(b+c)] U Spec, 4 88 ALL(c):[x f & _x f & c f => x+_x+c=x+(_x+c)] U Spec, 87 89 x f & _x f & _(_x) f => x+_x+_(_x)=x+(_x+_(_x)) U Spec, 88 90 _x f => _(_x) f U Spec, 8 91 _(_x) f Detach, 90, 80 92 x f & _x f Join, 77, 80 93 x f & _x f & _(_x) f Join, 92, 91 94 x+_x+_(_x)=x+(_x+_(_x)) Detach, 89, 93 95 x+_x+_(_x)=x Substitute, 94, 86 96 x f => x+_x=0 U Spec, 9 97 x+_x=0 Detach, 96, 77 98 0+_(_x)=x Substitute, 97, 95 99 ALL(b):[0 f & b f => 0+b=b+0] U Spec, 5 100 0 f & _(_x) f => 0+_(_x)=_(_x)+0 U Spec, 99 101 0 f & _(_x) f Join, 6, 91 102 0+_(_x)=_(_x)+0 Detach, 100, 101 103 _(_x)+0=x Substitute, 102, 98 104 _(_x) f => _(_x)+0=_(_x) U Spec, 7 105 _(_x)+0=_(_x) Detach, 104, 91 106 _(_x)=x Substitute, 105, 103 As Required: 107 x f => _(_x)=x Conclusion, 77 Theorem 4: 108 ALL(a):[a f => _(_a)=a] U Gen, 107 Prove: x f & 0<x => _x<0 Suppose... 109 x f & 0<x Premise 110 x f Split, 109 111 0<x Split, 109 112 x f => [0<x <=> x pos] U Spec, 59 113 0<x <=> x pos Detach, 112, 110 114 [0<x => x pos] & [x pos => 0<x] Iff-And, 113 115 0<x => x pos Split, 114 116 x pos => 0<x Split, 114 117 x pos Detach, 115, 111 118 _x f => [_x<0 <=> _(_x) pos] U Spec, 76 119 x f => _x f U Spec, 8 120 _x f Detach, 119, 110 121 _x<0 <=> _(_x) pos Detach, 118, 120 122 [_x<0 => _(_x) pos] & [_(_x) pos => _x<0] Iff-And, 121 123 _x<0 => _(_x) pos Split, 122 Sufficient: 124 _(_x) pos => _x<0 Split, 122 125 x f => _(_x)=x U Spec, 108 126 _(_x)=x Detach, 125, 110 127 x pos => _x<0 Substitute, 126, 124 128 _x<0 Detach, 127, 117 As Required: 129 x f & 0<x => _x<0 Conclusion, 109 Theorem 5: 130 ALL(a):[a f & 0<a => _a<0] U Gen, 129 Prove: x f & x<0 => 0<_x Suppose... 131 x f & x<0 Premise 132 x f Split, 131 133 x<0 Split, 131 134 x f => [x<0 <=> _x pos] U Spec, 76 135 x<0 <=> _x pos Detach, 134, 132 136 [x<0 => _x pos] & [_x pos => x<0] Iff-And, 135 137 x<0 => _x pos Split, 136 138 _x pos => x<0 Split, 136 139 _x pos Detach, 137, 133 140 _x f => [0<_x <=> _x pos] U Spec, 59 141 x f => _x f U Spec, 8 142 _x f Detach, 141, 132 143 0<_x <=> _x pos Detach, 140, 142 144 [0<_x => _x pos] & [_x pos => 0<_x] Iff-And, 143 145 0<_x => _x pos Split, 144 146 _x pos => 0<_x Split, 144 147 0<_x Detach, 146, 139 As Required: 148 x f & x<0 => 0<_x Conclusion, 131 Theorem 6: 149 ALL(a):[a f & a<0 => 0<_a] U Gen, 148