The Principal of Mathematical Induction derived from the Field Axioms From the field axioms for the real numbers we construct the set of natural numbers and derive all but one of Peano's axioms, namely that no natural number has a successor of 1. We prove that the natural numbers, as constructed here, uniquely satisfy the remaining axioms. We begin by constructing the subset n of the reals such that: Set(n) & ALL(a):[a ε n <=> a ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => a ε b]] We prove: 1. ALL(a):[a ε n => a ε real] (Lines 23 to 31) We suppose that x ε n. Applying the definition of n for x, we immediately obtain obtain x ε real. Then generalize on x. 2. 1εn (Lines 32 to 43) Applying the definition of n for 1, we obtain the sufficient conditions for 1 ε n. Required result then follows trivially. 3. ALL(a):[a ε n => a+1 ε n] (Lines 44 to 74) Suppose x ε n. Applying the definition of n for a=x and a=x+1, the result follows trivially. 4. ALL(a):[Set(a) (Lines 75 to 93) & ALL(c):[c ε a => c ε real] & 1 ε a & ALL(c):[c ε a => c+1 ε a] => ALL(b):[b ε n => b ε a]] Suppose the antecedent is true for some set s. Then suppose the x ε n. Applying the definition of n for x, can easily show that x ε s. Generalize to obtain the required result. 5. EXIST(nat):[Set(nat) & ALL(a):[a ε nat => a ε real] & 1 ε nat (Lines 94 to 98) & ALL(a):[a ε nat => a+1 ε nat] & ALL(a):[Set(a) & ALL(c):[c ε a => c ε real] & 1 ε a & ALL(c):[c ε a => c+1 ε a] => ALL(b):[b ε nat => b ε a]]] Combine previous results and generalize. 5. P(1) (Lines 99 to 162) & ALL(a):[a ε n & P(a) => P(a+1)] => ALL(a):[a ε n => P(a)] Begin by supposing the antecedent. Then construct subset p of n such that: ALL(a):[a ε p <=> a ε n & P(a)] Then apply the principle of mathematical induction (for the reals) from previous result (4) for set p. That set p is a subset of the reals, follows from the previous result (1). 1εp follows trivially from the definition of p. Suppose kεp. Applying the defintion of p for k and k+1, it is easy to show that k+1 ε p. Generalize this conclusion and the required result follows easily: ALL(a):[a ε n => P(a)] 6. n=n' given... (Lines 163 to 192) Set(n') & ALL(a):[a ε n' => a ε real] & 1 ε n' & ALL(a):[a ε n' => a+1 ε n'] & ALL(a):[Set(a) & ALL(c):[c ε a => c ε real] & 1 ε a & ALL(c):[c ε a => c+1 ε a] => ALL(b):[b ε n' => b ε a]] Apply PMI in n for set n'. And apply PMI in n' for set n. Result follows trivially. Field Axioms ************ 1 Set(real) & ALL(a):ALL(b):[a ε real & b ε real => a+b ε real] & ALL(a):ALL(b):ALL(c):[a ε real & b ε real & c ε real => a+b+c=a+(b+c)] & ALL(a):ALL(b):[a ε real & b ε real => a+b=b+a] & 0 ε real & ALL(a):[a ε real => a+0=a] & ALL(a):[a ε real => _a ε real] & ALL(a):[a ε real => a+_a=0] & ALL(a):ALL(b):[a ε real & b ε real => a*b ε real] & ALL(a):ALL(b):ALL(c):[a ε real & b ε real & c ε real => a*b*c=a*(b*c)] & ALL(a):ALL(b):[a ε real & b ε real => a*b=b*a] & ALL(a):ALL(b):ALL(c):[a ε real & b ε real & c ε real => a*(b+c)=a*b+a*c] & 1 ε real & ~0=1 & ALL(a):[a ε real => a*1=a] & ALL(a):[a ε real & ~a=0 => 1/a ε real] & ALL(a):[a ε real => a*(1/a)=1] Premise Splitting into individual axioms... Define: real, the set of real numbers 2 Set(real) Split, 1 Define: + operator 3 ALL(a):ALL(b):[a ε real & b ε real => a+b ε real] Split, 1 + is associative 4 ALL(a):ALL(b):ALL(c):[a ε real & b ε real & c ε real => a+b+c=a+(b+c)] Split, 1 + is commutative 5 ALL(a):ALL(b):[a ε real & b ε real => a+b=b+a] Split, 1 Define: 0 6 0 ε real Split, 1 7 ALL(a):[a ε real => a+0=a] Split, 1 Define: _x (additive invervse) 8 ALL(a):[a ε real => _a ε real] Split, 1 9 ALL(a):[a ε real => a+_a=0] Split, 1 Define: * operator 10 ALL(a):ALL(b):[a ε real & b ε real => a*b ε real] Split, 1 * is associative 11 ALL(a):ALL(b):ALL(c):[a ε real & b ε real & c ε real => a*b*c=a*(b*c)] Split, 1 * is commutative 12 ALL(a):ALL(b):[a ε real & b ε real => a*b=b*a] Split, 1 * is distributive over + 13 ALL(a):ALL(b):ALL(c):[a ε real & b ε real & c ε real => a*(b+c)=a*b+a*c] Split, 1 Define: 1 14 1 ε real Split, 1 15 ~0=1 Split, 1 16 ALL(a):[a ε real => a*1=a] Split, 1 Define: 1/x (multiplicative inverse) 17 ALL(a):[a ε real & ~a=0 => 1/a ε real] Split, 1 18 ALL(a):[a ε real => a*(1/a)=1] Split, 1 Construct n Applying the subset axiom... 19 EXIST(n):[Set(n) & ALL(a):[a ε n <=> a ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => a ε b]]] Subset, 2 Define: n, the set of natural numbers 20 Set(n) & ALL(a):[a ε n <=> a ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => a ε b]] E Spec, 19 21 Set(n) Split, 20 22 ALL(a):[a ε n <=> a ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => a ε b]] Split, 20 Prove: x ε n => x ε real Suppose... 23 x ε n Premise Apply definition of n for x 24 x ε n <=> x ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x ε b] U Spec, 22 25 [x ε n => x ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x ε b]] & [x ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x ε b] => x ε n] Iff-And, 24 26 x ε n => x ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x ε b] Split, 25 27 x ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x ε b] => x ε n Split, 25 28 x ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x ε b] Detach, 26, 23 29 x ε real Split, 28 As Required: 30 x ε n => x ε real Conclusion, 23 As Required: 31 ALL(a):[a ε n => a ε real] U Gen, 30 Prove: 1 ε n Apply defintion of n for 1 32 1 ε n <=> 1 ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => 1 ε b] U Spec, 22 33 [1 ε n => 1 ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => 1 ε b]] & [1 ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => 1 ε b] => 1 ε n] Iff-And, 32 34 1 ε n => 1 ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => 1 ε b] Split, 33 Sufficient: For 1εn 35 1 ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => 1 ε b] => 1 ε n Split, 33 Prove: Set(s) & ALL(c):[c ε s => c ε real] & 1 ε s & ALL(c):[c ε s => c+1 ε s] => 1 ε s Suppose... 36 Set(s) & ALL(c):[c ε s => c ε real] & 1 ε s & ALL(c):[c ε s => c+1 ε s] Premise 37 Set(s) Split, 36 38 ALL(c):[c ε s => c ε real] Split, 36 39 1 ε s Split, 36 As Required: 40 Set(s) & ALL(c):[c ε s => c ε real] & 1 ε s & ALL(c):[c ε s => c+1 ε s] => 1 ε s Conclusion, 36 Generalizing... 41 ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => 1 ε b] U Gen, 40 42 1 ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => 1 ε b] Join, 14, 41 As Required: 43 1 ε n Detach, 35, 42 Prove: xεn => x+1εn Suppose... 44 x ε n Premise Apply definition of n for x 45 x ε n <=> x ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x ε b] U Spec, 22 46 [x ε n => x ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x ε b]] & [x ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x ε b] => x ε n] Iff-And, 45 47 x ε n => x ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x ε b] Split, 46 48 x ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x ε b] => x ε n Split, 46 49 x ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x ε b] Detach, 47, 44 50 x ε real Split, 49 51 ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x ε b] Split, 49 Apply definition of n for x+1 52 x+1 ε n <=> x+1 ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x+1 ε b] U Spec, 22 53 [x+1 ε n => x+1 ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x+1 ε b]] & [x+1 ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x+1 ε b] => x+1 ε n] Iff-And, 52 54 x+1 ε n => x+1 ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x+1 ε b] Split, 53 Sufficient: For x+1 ε n 55 x+1 ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x+1 ε b] => x+1 ε n Split, 53 Apply defintion of + for x and 1 56 ALL(b):[x ε real & b ε real => x+b ε real] U Spec, 3 57 x ε real & 1 ε real => x+1 ε real U Spec, 56 58 x ε real & 1 ε real Join, 50, 14 59 x+1 ε real Detach, 57, 58 Prove: Set(s) & ALL(c):[c ε s => c ε real] & 1 ε s & ALL(c):[c ε s => c+1 ε s] => x+1 ε s Suppose... 60 Set(s) & ALL(c):[c ε s => c ε real] & 1 ε s & ALL(c):[c ε s => c+1 ε s] Premise 61 Set(s) Split, 60 62 ALL(c):[c ε s => c ε real] Split, 60 63 1 ε s Split, 60 64 ALL(c):[c ε s => c+1 ε s] Split, 60 Apply PMI 65 Set(s) & ALL(c):[c ε s => c ε real] & 1 ε s & ALL(c):[c ε s => c+1 ε s] => x ε s U Spec, 51 66 x ε s Detach, 65, 60 Apply defintion of s 67 x ε s => x+1 ε s U Spec, 64 68 x+1 ε s Detach, 67, 66 As Required: 69 Set(s) & ALL(c):[c ε s => c ε real] & 1 ε s & ALL(c):[c ε s => c+1 ε s] => x+1 ε s Conclusion, 60 Generalizing... 70 ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x+1 ε b] U Gen, 69 71 x+1 ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x+1 ε b] Join, 59, 70 72 x+1 ε n Detach, 55, 71 As Required: 73 x ε n => x+1 ε n Conclusion, 44 As Required: 74 ALL(a):[a ε n => a+1 ε n] U Gen, 73 Prove: Set(s) & ALL(c):[c ε s => c ε real] & 1 ε s & ALL(c):[c ε s => c+1 ε s] => ALL(b):[b ε n => b ε s] Suppose... 75 Set(s) & ALL(c):[c ε s => c ε real] & 1 ε s & ALL(c):[c ε s => c+1 ε s] Premise 76 Set(s) Split, 75 77 ALL(c):[c ε s => c ε real] Split, 75 78 1 ε s Split, 75 79 ALL(c):[c ε s => c+1 ε s] Split, 75 Prove: xεn => xεs 80 x ε n Premise Apply definition of n for x 81 x ε n <=> x ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x ε b] U Spec, 22 82 [x ε n => x ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x ε b]] & [x ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x ε b] => x ε n] Iff-And, 81 83 x ε n => x ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x ε b] Split, 82 84 x ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x ε b] => x ε n Split, 82 85 x ε real & ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x ε b] Detach, 83, 80 86 x ε real Split, 85 87 ALL(b):[Set(b) & ALL(c):[c ε b => c ε real] & 1 ε b & ALL(c):[c ε b => c+1 ε b] => x ε b] Split, 85 88 Set(s) & ALL(c):[c ε s => c ε real] & 1 ε s & ALL(c):[c ε s => c+1 ε s] => x ε s U Spec, 87 89 x ε s Detach, 88, 75 As Required: 90 x ε n => x ε s Conclusion, 80 91 ALL(b):[b ε n => b ε s] U Gen, 90 As Required: 92 Set(s) & ALL(c):[c ε s => c ε real] & 1 ε s & ALL(c):[c ε s => c+1 ε s] => ALL(b):[b ε n => b ε s] Conclusion, 75 As Required: 93 ALL(a):[Set(a) & ALL(c):[c ε a => c ε real] & 1 ε a & ALL(c):[c ε a => c+1 ε a] => ALL(b):[b ε n => b ε a]] U Gen, 92 94 Set(n) & ALL(a):[a ε n => a ε real] Join, 21, 31 95 Set(n) & ALL(a):[a ε n => a ε real] & 1 ε n Join, 94, 43 96 Set(n) & ALL(a):[a ε n => a ε real] & 1 ε n & ALL(a):[a ε n => a+1 ε n] Join, 95, 74 97 Set(n) & ALL(a):[a ε n => a ε real] & 1 ε n & ALL(a):[a ε n => a+1 ε n] & ALL(a):[Set(a) & ALL(c):[c ε a => c ε real] & 1 ε a & ALL(c):[c ε a => c+1 ε a] => ALL(b):[b ε n => b ε a]] Join, 96, 93 98 EXIST(nat):[Set(nat) & ALL(a):[a ε nat => a ε real] & 1 ε nat & ALL(a):[a ε nat => a+1 ε nat] & ALL(a):[Set(a) & ALL(c):[c ε a => c ε real] & 1 ε a & ALL(c):[c ε a => c+1 ε a] => ALL(b):[b ε nat => b ε a]]] E Gen, 97 Prove: P(1) & ALL(a):[a ε n & P(a) => P(a+1)] => ALL(a):[a ε n => P(a)] Suppose... 99 P(1) & ALL(a):[a ε n & P(a) => P(a+1)] Premise 100 P(1) Split, 99 101 ALL(a):[a ε n & P(a) => P(a+1)] Split, 99 Apply subset axiom 102 EXIST(p):[Set(p) & ALL(a):[a ε p <=> a ε n & P(a)]] Subset, 21 Define: p, those natural x numbers for which P(x) is true 103 Set(p) & ALL(a):[a ε p <=> a ε n & P(a)] E Spec, 102 104 Set(p) Split, 103 105 ALL(a):[a ε p <=> a ε n & P(a)] Split, 103 Sufficient: For ALL(b):[b ε n => b ε p] Apply PMI 106 Set(p) & ALL(c):[c ε p => c ε real] & 1 ε p & ALL(c):[c ε p => c+1 ε p] => ALL(b):[b ε n => b ε p] U Spec, 93 107 1 ε p <=> 1 ε n & P(1) U Spec, 105 108 [1 ε p => 1 ε n & P(1)] & [1 ε n & P(1) => 1 ε p] Iff-And, 107 109 1 ε p => 1 ε n & P(1) Split, 108 110 1 ε n & P(1) => 1 ε p Split, 108 111 1 ε n & P(1) Join, 43, 100 As Required: 112 1 ε p Detach, 110, 111 Prove: kεp => k+1εp Suppose... 113 k ε p Premise Apply definition of p for k 114 k ε p <=> k ε n & P(k) U Spec, 105 115 [k ε p => k ε n & P(k)] & [k ε n & P(k) => k ε p] Iff-And, 114 116 k ε p => k ε n & P(k) Split, 115 117 k ε n & P(k) => k ε p Split, 115 118 k ε n & P(k) Detach, 116, 113 119 k ε n Split, 118 120 P(k) Split, 118 Apply definition of p for k+1 121 k+1 ε p <=> k+1 ε n & P(k+1) U Spec, 105 122 [k+1 ε p => k+1 ε n & P(k+1)] & [k+1 ε n & P(k+1) => k+1 ε p] Iff-And, 121 123 k+1 ε p => k+1 ε n & P(k+1) Split, 122 Sufficient: For k+1 ε p 124 k+1 ε n & P(k+1) => k+1 ε p Split, 122 Apply previous result. 125 k ε n => k+1 ε n U Spec, 74 126 k+1 ε n Detach, 125, 119 Apply premise 127 k ε n & P(k) => P(k+1) U Spec, 101 128 k ε n & P(k) Join, 119, 120 129 P(k+1) Detach, 127, 128 130 k+1 ε n & P(k+1) Join, 126, 129 131 k+1 ε p Detach, 124, 130 As Required: 132 k ε p => k+1 ε p Conclusion, 113 As Required: 133 ALL(c):[c ε p => c+1 ε p] U Gen, 132 Prove: k ε p => k ε real Suppose... 134 k ε p Premise Apply definition of p 135 k ε p <=> k ε n & P(k) U Spec, 105 136 [k ε p => k ε n & P(k)] & [k ε n & P(k) => k ε p] Iff-And, 135 137 k ε p => k ε n & P(k) Split, 136 138 k ε n & P(k) => k ε p Split, 136 139 k ε n & P(k) Detach, 137, 134 140 k ε n Split, 139 141 P(k) Split, 139 Apply previous result 142 k ε n => k ε real U Spec, 31 143 k ε real Detach, 142, 140 As Required: 144 k ε p => k ε real Conclusion, 134 As Required: 145 ALL(c):[c ε p => c ε real] U Gen, 144 146 Set(p) & ALL(c):[c ε p => c ε real] Join, 104, 145 147 Set(p) & ALL(c):[c ε p => c ε real] & 1 ε p Join, 146, 112 148 Set(p) & ALL(c):[c ε p => c ε real] & 1 ε p & ALL(c):[c ε p => c+1 ε p] Join, 147, 133 As Required: 149 ALL(b):[b ε n => b ε p] Detach, 106, 148 Prove: k ε n => P(k) Suppose... 150 k ε n Premise 151 k ε n => k ε p U Spec, 149 152 k ε p Detach, 151, 150 153 k ε p <=> k ε n & P(k) U Spec, 105 154 [k ε p => k ε n & P(k)] & [k ε n & P(k) => k ε p] Iff-And, 153 155 k ε p => k ε n & P(k) Split, 154 156 k ε n & P(k) => k ε p Split, 154 157 k ε n & P(k) Detach, 155, 152 158 k ε n Split, 157 159 P(k) Split, 157 As Required: 160 k ε n => P(k) Conclusion, 150 Generalizing... 161 ALL(a):[a ε n => P(a)] U Gen, 160 As Required: 162 P(1) & ALL(a):[a ε n & P(a) => P(a+1)] => ALL(a):[a ε n => P(a)] Conclusion, 99 Prove: n=n' given... 163 Set(n') & ALL(a):[a ε n' => a ε real] & 1 ε n' & ALL(a):[a ε n' => a+1 ε n'] & ALL(a):[Set(a) & ALL(c):[c ε a => c ε real] & 1 ε a & ALL(c):[c ε a => c+1 ε a] => ALL(b):[b ε n' => b ε a]] E Spec, 98 164 Set(n') Split, 163 165 ALL(a):[a ε n' => a ε real] Split, 163 166 1 ε n' Split, 163 167 ALL(a):[a ε n' => a+1 ε n'] Split, 163 168 ALL(a):[Set(a) & ALL(c):[c ε a => c ε real] & 1 ε a & ALL(c):[c ε a => c+1 ε a] => ALL(b):[b ε n' => b ε a]] Split, 163 169 ALL(a):ALL(b):[Set(a) & Set(b) => [a=b <=> ALL(c):[c ε a <=> c ε b]]] Set Equality 170 ALL(b):[Set(n) & Set(b) => [n=b <=> ALL(c):[c ε n <=> c ε b]]] U Spec, 169 171 Set(n) & Set(n') => [n=n' <=> ALL(c):[c ε n <=> c ε n']] U Spec, 170 172 Set(n) & Set(n') Join, 21, 164 173 n=n' <=> ALL(c):[c ε n <=> c ε n'] Detach, 171, 172 174 [n=n' => ALL(c):[c ε n <=> c ε n']] & [ALL(c):[c ε n <=> c ε n'] => n=n'] Iff-And, 173 175 n=n' => ALL(c):[c ε n <=> c ε n'] Split, 174 Sufficient: For n=n' 176 ALL(c):[c ε n <=> c ε n'] => n=n' Split, 174 Apply PMI in n 177 Set(n') & ALL(c):[c ε n' => c ε real] & 1 ε n' & ALL(c):[c ε n' => c+1 ε n'] => ALL(b):[b ε n => b ε n'] U Spec, 93 178 Set(n') & ALL(a):[a ε n' => a ε real] Join, 164, 165 179 Set(n') & ALL(a):[a ε n' => a ε real] & 1 ε n' Join, 178, 166 180 Set(n') & ALL(a):[a ε n' => a ε real] & 1 ε n' & ALL(a):[a ε n' => a+1 ε n'] Join, 179, 167 181 ALL(b):[b ε n => b ε n'] Detach, 177, 180 Apply PMI in n' 182 Set(n) & ALL(c):[c ε n => c ε real] & 1 ε n & ALL(c):[c ε n => c+1 ε n] => ALL(b):[b ε n' => b ε n] U Spec, 168 183 Set(n) & ALL(a):[a ε n => a ε real] Join, 21, 31 184 Set(n) & ALL(a):[a ε n => a ε real] & 1 ε n Join, 183, 43 185 Set(n) & ALL(a):[a ε n => a ε real] & 1 ε n & ALL(a):[a ε n => a+1 ε n] Join, 184, 74 186 ALL(b):[b ε n' => b ε n] Detach, 182, 185 187 k ε n => k ε n' U Spec, 181 188 k ε n' => k ε n U Spec, 186 189 [k ε n => k ε n'] & [k ε n' => k ε n] Join, 187, 188 190 k ε n <=> k ε n' Iff-And, 189 191 ALL(a):[a ε n <=> a ε n'] U Gen, 190 As Required: The subset n uniquely satisfies the remaining Peano Axioms????? 192 n=n' Detach, 176, 191