Theorem

-------

 

The statement

 

     EXIST(b):[b e u & ALL(a):[a e u => P(a,b)]]  (1)

 

does NOT follow from the statement

 

     ALL(a):[a e u => EXIST(b):[b e u & P(a,b)]]  (2)

 

As proof, we present a simple counter-example: We let the domain of quantification u = {x, y} for distinct x and y, and let the predicate P be the "is equal to" relation defined on u.

 

Note: The fact that x and y are distinct follows from the axioms P(x,x) and ~P(x,y). Assuming x=y would lead to a contradiction.

 

We will prove that, in this case, (1) is false and (2) is true.

 

By Dan Christensen

http://www.dcproof.com

 

 

Axioms

------

 

Define: u, the domain of quantification

 

Note: '|' is the OR-operator in DC Proof

 

1     ALL(a):[a e u <=> a=x | a=y]

      Axiom

 

 

We will require:  x e u

 

Apply definition of u

 

2     x e u <=> x=x | x=y

      U Spec, 1

 

3     [x e u => x=x | x=y] & [x=x | x=y => x e u]

      Iff-And, 2

 

4     x e u => x=x | x=y

      Split, 3

 

5     x=x | x=y => x e u

      Split, 3

 

6     x=x

      Reflex

 

7     x=x | x=y

      Arb Or, 6

 

8     x e u

      Detach, 5, 7

 

 

We will also require y e u

 

Apply definition of u

 

9     y e u <=> y=x | y=y

      U Spec, 1

 

10    [y e u => y=x | y=y] & [y=x | y=y => y e u]

      Iff-And, 9

 

11    y e u => y=x | y=y

      Split, 10

 

12    y=x | y=y => y e u

      Split, 10

 

13    y=y

      Reflex

 

14    y=x | y=y

      Arb Or, 13

 

15    y e u

      Detach, 12, 14

 

 

Define: P  (the relation "is equal to" on u)

 

16    P(x,x)

      Axiom

 

17    P(y,y)

      Axiom

 

18    ~P(x,y)

      Axiom

 

19    ~P(y,x)

      Axiom

 

    

     Proof

     -----

    

     Prove: ALL(a):[a e u => EXIST(b):[b e u & P(a,b)]]

    

     Suppose...

 

      20    v e u

            Premise

 

     Apply definition of u

 

      21    v e u <=> v=x | v=y

            U Spec, 1

 

      22    [v e u => v=x | v=y] & [v=x | v=y => v e u]

            Iff-And, 21

 

      23    v e u => v=x | v=y

            Split, 22

 

      24    v=x | v=y => v e u

            Split, 22

 

     2 cases:

 

      25    v=x | v=y

            Detach, 23, 20

 

          Case 1

         

          Prove: v=x => EXIST(b):[b e u & P(v,b)]

         

          Suppose...

 

            26    v=x

                  Premise

 

            27    x e u & P(x,x)

                  Join, 8, 16

 

            28    x e u & P(v,x)

                  Substitute, 26, 27

 

            29    EXIST(b):[b e u & P(v,b)]

                  E Gen, 28

 

     As Required:

 

      30    v=x => EXIST(b):[b e u & P(v,b)]

            4 Conclusion, 26

 

          Case 2

         

          Prove: v=y => EXIST(b):[b e u & P(v,b)]

         

          Suppose...

 

            31    v=y

                  Premise

 

            32    y e u & P(y,y)

                  Join, 15, 17

 

            33    y e u & P(v,y)

                  Substitute, 31, 32

 

            34    EXIST(b):[b e u & P(v,b)]

                  E Gen, 33

 

     As Required:

 

      35    v=y => EXIST(b):[b e u & P(v,b)]

            4 Conclusion, 31

 

     Join results for Cases Rule

 

      36    [v=x => EXIST(b):[b e u & P(v,b)]]

          & [v=y => EXIST(b):[b e u & P(v,b)]]

            Join, 30, 35

 

     Apply Cases Rule

 

      37    EXIST(b):[b e u & P(v,b)]

            Cases, 25, 36

 

As Required:

 

38    ALL(a):[a e u => EXIST(b):[b e u & P(a,b)]]

      4 Conclusion, 20

 

    

     Prove: ALL(b):[b e u => EXIST(a):[a e u & ~P(a,b)]]

    

     Suppose...

 

      39    w e u

            Premise

 

     Apply definition of u

 

      40    w e u <=> w=x | w=y

            U Spec, 1

 

      41    [w e u => w=x | w=y] & [w=x | w=y => w e u]

            Iff-And, 40

 

      42    w e u => w=x | w=y

            Split, 41

 

      43    w=x | w=y => w e u

            Split, 41

 

     2 cases:

 

      44    w=x | w=y

            Detach, 42, 39

 

          Case 1

         

          Prove: w=x => EXIST(a):[a e u & ~P(a,w)]

         

          Suppose...

 

            45    w=x

                  Premise

 

            46    y e u & ~P(y,x)

                  Join, 15, 19

 

            47    y e u & ~P(y,w)

                  Substitute, 45, 46

 

            48    EXIST(a):[a e u & ~P(a,w)]

                  E Gen, 47

 

     As Required:

 

      49    w=x => EXIST(a):[a e u & ~P(a,w)]

            4 Conclusion, 45

 

          Case 2

         

          Prove: w=y => EXIST(a):[a e u & ~P(a,w)]

         

          Suppose...

 

            50    w=y

                  Premise

 

            51    x e u & ~P(x,y)

                  Join, 8, 18

 

            52    x e u & ~P(x,w)

                  Substitute, 50, 51

 

            53    EXIST(a):[a e u & ~P(a,w)]

                  E Gen, 52

 

     As Required:

 

      54    w=y => EXIST(a):[a e u & ~P(a,w)]

            4 Conclusion, 50

 

     Join results for Cases Rule

 

      55    [w=x => EXIST(a):[a e u & ~P(a,w)]]

          & [w=y => EXIST(a):[a e u & ~P(a,w)]]

            Join, 49, 54

 

     Apply Cases Rule

 

      56    EXIST(a):[a e u & ~P(a,w)]

            Cases, 44, 55

 

As Required:

 

57    ALL(b):[b e u => EXIST(a):[a e u & ~P(a,b)]]

      4 Conclusion, 39

 

Prove: ~EXIST(b):[b e u & ALL(a):[a e u => P(a,b)]]

 

58    ~EXIST(b):~[b e u => EXIST(a):[a e u & ~P(a,b)]]

      Quant, 57

 

59    ~EXIST(b):~~[b e u & ~EXIST(a):[a e u & ~P(a,b)]]

      Imply-And, 58

 

60    ~EXIST(b):[b e u & ~EXIST(a):[a e u & ~P(a,b)]]

      Rem DNeg, 59

 

61    ~EXIST(b):[b e u & ~~ALL(a):~[a e u & ~P(a,b)]]

      Quant, 60

 

62    ~EXIST(b):[b e u & ALL(a):~[a e u & ~P(a,b)]]

      Rem DNeg, 61

 

63    ~EXIST(b):[b e u & ALL(a):~~[a e u => ~~P(a,b)]]

      Imply-And, 62

 

64    ~EXIST(b):[b e u & ALL(a):[a e u => ~~P(a,b)]]

      Rem DNeg, 63

 

As Required:

 

65    ~EXIST(b):[b e u & ALL(a):[a e u => P(a,b)]]

      Rem DNeg, 64