Power Set Theorem ----------------- If p is the power set of s, then there can exist no function f mapping s onto p. In some sense then, there must be "more" elements in p than in s. Formally, we are required to prove: ALL(a):ALL(b):[Set(a) & Set(b) & ALL(c):[c ε b <=> Set(c) & ALL(d):[d ε c => d ε a]] => ~EXIST(f):[ALL(x):[x ε a => f(x) ε b] & ALL(x):[x ε b => EXIST(x'):[x' ε a & f(x')=x]]]] Suppose p is the powerset of s. 1 Set(s) & Set(p) & ALL(c):[c ε p <=> Set(c) & ALL(d):[d ε c => d ε s]] Premise Splitting this premise into its component parts... s is a set. This declaration will allow us to apply the set-theoretic axioms to s. 2 Set(s) Split, 1 p is a set 3 Set(p) Split, 1 p is the power set of s 4 ALL(c):[c ε p <=> Set(c) & ALL(d):[d ε c => d ε s]] Split, 1 Prove: ~[ALL(x):[x ε s => f(x) ε p] & ALL(x):[x ε p => EXIST(x'):[x' ε s & f(x')=x]]] Suppose to the contrary. Let f be a surjective function mapping s onto its power set p. 5 ALL(x):[x ε s => f(x) ε p] & ALL(x):[x ε p => EXIST(x'):[x' ε s & f(x')=x]] Premise Splitting this premise into its component parts... f is a function making elements of s to p 6 ALL(x):[x ε s => f(x) ε p] Split, 5 Every element of p is assumed to have a pre-image in s, i.e. f is surjective 7 ALL(x):[x ε p => EXIST(x'):[x' ε s & f(x')=x]] Split, 5 Apply the Subset axiom 8 EXIST(a):[Set(a) & ALL(b):[b ε a <=> b ε s & ~b ε f(b)]] Subset, 2 Define: k, the subset of those and only those elements of s that are not elements of their image under f 9 Set(k) & ALL(b):[b ε k <=> b ε s & ~b ε f(b)] E Spec, 8 Splitting... 10 Set(k) Split, 9 11 ALL(b):[b ε k <=> b ε s & ~b ε f(b)] Split, 9 Apply the definition of f for x=k 12 k ε p => EXIST(x'):[x' ε s & f(x')=k] U Spec, 7 Prove: kεp Apply the definition of p for c=k 13 k ε p <=> Set(k) & ALL(d):[d ε k => d ε s] U Spec, 4 Split this biconditional statement 14 [k ε p => Set(k) & ALL(d):[d ε k => d ε s]] & [Set(k) & ALL(d):[d ε k => d ε s] => k ε p] Iff-And, 13 15 k ε p => Set(k) & ALL(d):[d ε k => d ε s] Split, 14 Sufficient: For k ε p 16 Set(k) & ALL(d):[d ε k => d ε s] => k ε p Split, 14 Prove: x ε k => x ε s Suppose... 17 x ε k Premise Apply the definition of k for b=x 18 x ε k <=> x ε s & ~x ε f(x) U Spec, 11 Split this biconditional statement 19 [x ε k => x ε s & ~x ε f(x)] & [x ε s & ~x ε f(x) => x ε k] Iff-And, 18 20 x ε k => x ε s & ~x ε f(x) Split, 19 21 x ε s & ~x ε f(x) => x ε k Split, 19 Apply detachment on lines 20 and 17 22 x ε s & ~x ε f(x) Detach, 20, 17 23 x ε s Split, 22 As Required: 24 x ε k => x ε s Conclusion, 17 Generalizing... 25 ALL(a):[a ε k => a ε s] U Gen, 24 Join results 26 Set(k) & ALL(a):[a ε k => a ε s] Join, 10, 25 As Required: 27 k ε p Detach, 16, 26 From the definition of k... 28 EXIST(x'):[x' ε s & f(x')=k] Detach, 12, 27 Define: k', the pre-image of k under f. 29 k' ε s & f(k')=k E Spec, 28 Splitting... 30 k' ε s Split, 29 31 f(k')=k Split, 29 Is k' ε k? Apply the definition of k for b=k' 32 k' ε k <=> k' ε s & ~k' ε f(k') U Spec, 11 Substituting... 33 k' ε k <=> k' ε s & ~k' ε k Substitute, 31, 32 Split this biconditional statement 34 [k' ε k => k' ε s & ~k' ε k] & [k' ε s & ~k' ε k => k' ε k] Iff-And, 33 35 k' ε k => k' ε s & ~k' ε k Split, 34 36 k' ε s & ~k' ε k => k' ε k Split, 34 Prove: ~ k' ε k Suppose to the contrary... 37 k' ε k Premise From the definition of k... 38 k' ε s & ~k' ε k Detach, 35, 37 Splitting... 39 k' ε s Split, 38 40 ~k' ε k Split, 38 Obtain the contradiction... 41 k' ε k & ~k' ε k Join, 37, 40 As Required: 42 ~k' ε k Conclusion, 37 43 k' ε s & ~k' ε k Join, 30, 42 From the definition of k... 44 k' ε k Detach, 36, 43 Obtain the contradiction... 45 ~k' ε k & k' ε k Join, 42, 44 As Required: 46 ~[ALL(x):[x ε s => f(x) ε p] & ALL(x):[x ε p => EXIST(x'):[x' ε s & f(x')=x]]] Conclusion, 5 Generalizing... 47 ALL(f):~[ALL(x):[x ε s => f(x) ε p] & ALL(x):[x ε p => EXIST(x'):[x' ε s & f(x')=x]]] U Gen, 46 Switch quantifier 48 ~EXIST(f):~~[ALL(x):[x ε s => f(x) ε p] & ALL(x):[x ε p => EXIST(x'):[x' ε s & f(x')=x]]] Quant, 47 Remove the double negation 49 ~EXIST(f):[ALL(x):[x ε s => f(x) ε p] & ALL(x):[x ε p => EXIST(x'):[x' ε s & f(x')=x]]] Rem DNeg, 48 As Required: 50 Set(s) & Set(p) & ALL(c):[c ε p <=> Set(c) & ALL(d):[d ε c => d ε s]] => ~EXIST(f):[ALL(x):[x ε s => f(x) ε p] & ALL(x):[x ε p => EXIST(x'):[x' ε s & f(x')=x]]] Conclusion, 1 Generalizing... 51 ALL(b):[Set(s) & Set(b) & ALL(c):[c ε b <=> Set(c) & ALL(d):[d ε c => d ε s]] => ~EXIST(f):[ALL(x):[x ε s => f(x) ε b] & ALL(x):[x ε b => EXIST(x'):[x' ε s & f(x')=x]]]] U Gen, 50 As Required: 52 ALL(a):ALL(b):[Set(a) & Set(b) & ALL(c):[c ε b <=> Set(c) & ALL(d):[d ε c => d ε a]] => ~EXIST(f):[ALL(x):[x ε a => f(x) ε b] & ALL(x):[x ε b => EXIST(x'):[x' ε a & f(x')=x]]]] U Gen, 51