Power Set Theorem
-----------------
If p is the power set of s, then there can exist no function f mapping s onto p.
In some sense then, there must be "more" elements in p than in s.
Formally, we are required to prove:
ALL(a):ALL(b):[Set(a)
& Set(b)
& ALL(c):[c ε b <=> Set(c) & ALL(d):[d ε c => d ε a]]
=> ~EXIST(f):[ALL(x):[x ε a => f(x) ε b]
& ALL(x):[x ε b => EXIST(x'):[x' ε a & f(x')=x]]]]
Suppose p is the powerset of s.
1 Set(s)
& Set(p)
& ALL(c):[c ε p <=> Set(c) & ALL(d):[d ε c => d ε s]]
Premise
Splitting this premise into its component parts...
s is a set. This declaration will allow us to apply the set-theoretic axioms to s.
2 Set(s)
Split, 1
p is a set
3 Set(p)
Split, 1
p is the power set of s
4 ALL(c):[c ε p <=> Set(c) & ALL(d):[d ε c => d ε s]]
Split, 1
Prove: ~[ALL(x):[x ε s => f(x) ε p]
& ALL(x):[x ε p => EXIST(x'):[x' ε s & f(x')=x]]]
Suppose to the contrary. Let f be a surjective function mapping s onto its power set p.
5 ALL(x):[x ε s => f(x) ε p]
& ALL(x):[x ε p => EXIST(x'):[x' ε s & f(x')=x]]
Premise
Splitting this premise into its component parts...
f is a function making elements of s to p
6 ALL(x):[x ε s => f(x) ε p]
Split, 5
Every element of p is assumed to have a pre-image in s, i.e. f is surjective
7 ALL(x):[x ε p => EXIST(x'):[x' ε s & f(x')=x]]
Split, 5
Apply the Subset axiom
8 EXIST(a):[Set(a) & ALL(b):[b ε a <=> b ε s & ~b ε f(b)]]
Subset, 2
Define: k, the subset of those and only those elements of s that are
not elements of their image under f
9 Set(k) & ALL(b):[b ε k <=> b ε s & ~b ε f(b)]
E Spec, 8
Splitting...
10 Set(k)
Split, 9
11 ALL(b):[b ε k <=> b ε s & ~b ε f(b)]
Split, 9
Apply the definition of f for x=k
12 k ε p => EXIST(x'):[x' ε s & f(x')=k]
U Spec, 7
Prove: kεp
Apply the definition of p for c=k
13 k ε p <=> Set(k) & ALL(d):[d ε k => d ε s]
U Spec, 4
Split this biconditional statement
14 [k ε p => Set(k) & ALL(d):[d ε k => d ε s]]
& [Set(k) & ALL(d):[d ε k => d ε s] => k ε p]
Iff-And, 13
15 k ε p => Set(k) & ALL(d):[d ε k => d ε s]
Split, 14
Sufficient: For k ε p
16 Set(k) & ALL(d):[d ε k => d ε s] => k ε p
Split, 14
Prove: x ε k => x ε s
Suppose...
17 x ε k
Premise
Apply the definition of k for b=x
18 x ε k <=> x ε s & ~x ε f(x)
U Spec, 11
Split this biconditional statement
19 [x ε k => x ε s & ~x ε f(x)]
& [x ε s & ~x ε f(x) => x ε k]
Iff-And, 18
20 x ε k => x ε s & ~x ε f(x)
Split, 19
21 x ε s & ~x ε f(x) => x ε k
Split, 19
Apply detachment on lines 20 and 17
22 x ε s & ~x ε f(x)
Detach, 20, 17
23 x ε s
Split, 22
As Required:
24 x ε k => x ε s
Conclusion, 17
Generalizing...
25 ALL(a):[a ε k => a ε s]
U Gen, 24
Join results
26 Set(k) & ALL(a):[a ε k => a ε s]
Join, 10, 25
As Required:
27 k ε p
Detach, 16, 26
From the definition of k...
28 EXIST(x'):[x' ε s & f(x')=k]
Detach, 12, 27
Define: k', the pre-image of k under f.
29 k' ε s & f(k')=k
E Spec, 28
Splitting...
30 k' ε s
Split, 29
31 f(k')=k
Split, 29
Is k' ε k?
Apply the definition of k for b=k'
32 k' ε k <=> k' ε s & ~k' ε f(k')
U Spec, 11
Substituting...
33 k' ε k <=> k' ε s & ~k' ε k
Substitute, 31, 32
Split this biconditional statement
34 [k' ε k => k' ε s & ~k' ε k]
& [k' ε s & ~k' ε k => k' ε k]
Iff-And, 33
35 k' ε k => k' ε s & ~k' ε k
Split, 34
36 k' ε s & ~k' ε k => k' ε k
Split, 34
Prove: ~ k' ε k
Suppose to the contrary...
37 k' ε k
Premise
From the definition of k...
38 k' ε s & ~k' ε k
Detach, 35, 37
Splitting...
39 k' ε s
Split, 38
40 ~k' ε k
Split, 38
Obtain the contradiction...
41 k' ε k & ~k' ε k
Join, 37, 40
As Required:
42 ~k' ε k
Conclusion, 37
43 k' ε s & ~k' ε k
Join, 30, 42
From the definition of k...
44 k' ε k
Detach, 36, 43
Obtain the contradiction...
45 ~k' ε k & k' ε k
Join, 42, 44
As Required:
46 ~[ALL(x):[x ε s => f(x) ε p]
& ALL(x):[x ε p => EXIST(x'):[x' ε s & f(x')=x]]]
Conclusion, 5
Generalizing...
47 ALL(f):~[ALL(x):[x ε s => f(x) ε p]
& ALL(x):[x ε p => EXIST(x'):[x' ε s & f(x')=x]]]
U Gen, 46
Switch quantifier
48 ~EXIST(f):~~[ALL(x):[x ε s => f(x) ε p]
& ALL(x):[x ε p => EXIST(x'):[x' ε s & f(x')=x]]]
Quant, 47
Remove the double negation
49 ~EXIST(f):[ALL(x):[x ε s => f(x) ε p]
& ALL(x):[x ε p => EXIST(x'):[x' ε s & f(x')=x]]]
Rem DNeg, 48
As Required:
50 Set(s)
& Set(p)
& ALL(c):[c ε p <=> Set(c) & ALL(d):[d ε c => d ε s]]
=> ~EXIST(f):[ALL(x):[x ε s => f(x) ε p]
& ALL(x):[x ε p => EXIST(x'):[x' ε s & f(x')=x]]]
Conclusion, 1
Generalizing...
51 ALL(b):[Set(s)
& Set(b)
& ALL(c):[c ε b <=> Set(c) & ALL(d):[d ε c => d ε s]]
=> ~EXIST(f):[ALL(x):[x ε s => f(x) ε b]
& ALL(x):[x ε b => EXIST(x'):[x' ε s & f(x')=x]]]]
U Gen, 50
As Required:
52 ALL(a):ALL(b):[Set(a)
& Set(b)
& ALL(c):[c ε b <=> Set(c) & ALL(d):[d ε c => d ε a]]
=> ~EXIST(f):[ALL(x):[x ε a => f(x) ε b]
& ALL(x):[x ε b => EXIST(x'):[x' ε a & f(x')=x]]]]
U Gen, 51