The Power Set Theorem Theorem ------- If p is the powerset of s, then there exists no function mapping s to every element of p. Thus, the powerset of any set s, finite or otherwise, is always larger than s. Here, the Subset Axiom is used to create an contradiction in an indirect proof. Proof ----- Let p be the powerset of s 1 Set(s) & Set(p) & ALL(c):[c ε p <=> Set(c) & ALL(d):[d ε c => d ε s]] Premise Split premise 2 Set(s) Split, 1 3 Set(p) Split, 1 4 ALL(c):[c ε p <=> Set(c) & ALL(d):[d ε c => d ε s]] Split, 1 Let f be a function mapping s to every element of p. Obtain a contradiction. 5 ALL(x):[x ε s => f(x) ε p] & ALL(x):[x ε p => EXIST(x'):[x' ε s & f(x')=x]] Premise 6 ALL(x):[x ε s => f(x) ε p] Split, 5 7 ALL(x):[x ε p => EXIST(x'):[x' ε s & f(x')=x]] Split, 5 Construct set k 8 EXIST(a):[Set(a) & ALL(b):[b ε a <=> b ε s & ~b ε f(b)]] Subset, 2 9 Set(k) & ALL(b):[b ε k <=> b ε s & ~b ε f(b)] E Spec, 8 Define: k, the subset of s that is not a element of its image under f 10 Set(k) Split, 9 11 ALL(b):[b ε k <=> b ε s & ~b ε f(b)] Split, 9 Prove: kεp Apply the definition of p for a=k 12 k ε p <=> Set(k) & ALL(d):[d ε k => d ε s] U Spec, 4 13 [k ε p => Set(k) & ALL(d):[d ε k => d ε s]] & [Set(k) & ALL(d):[d ε k => d ε s] => k ε p] Iff-And, 12 14 k ε p => Set(k) & ALL(d):[d ε k => d ε s] Split, 13 Sufficient: For k ε p 15 Set(k) & ALL(d):[d ε k => d ε s] => k ε p Split, 13 Prove: ALL(d):[d ε k => d ε s] Suppose... 16 x ε k Premise Apply definition of k 17 x ε k <=> x ε s & ~x ε f(x) U Spec, 11 18 [x ε k => x ε s & ~x ε f(x)] & [x ε s & ~x ε f(x) => x ε k] Iff-And, 17 19 x ε k => x ε s & ~x ε f(x) Split, 18 20 x ε s & ~x ε f(x) => x ε k Split, 18 21 x ε s & ~x ε f(x) Detach, 19, 16 22 x ε s Split, 21 As Required: 23 ALL(d):[d ε k => d ε s] Conclusion, 16 24 Set(k) & ALL(d):[d ε k => d ε s] Join, 10, 23 As Required: 25 k ε p Detach, 15, 24 Apply definition of f 26 k ε p => EXIST(x'):[x' ε s & f(x')=k] U Spec, 7 27 EXIST(x'):[x' ε s & f(x')=k] Detach, 26, 25 Define: k', the pre-image of k under f 28 k' ε s & f(k')=k E Spec, 27 29 k' ε s Split, 28 30 f(k')=k Split, 28 Is k' ε k? Apply the definition of k 31 k' ε k <=> k' ε s & ~k' ε f(k') U Spec, 11 Substitute 32 k' ε k <=> k' ε s & ~k' ε k Substitute, 30, 31 33 [k' ε k => k' ε s & ~k' ε k] & [k' ε s & ~k' ε k => k' ε k] Iff-And, 32 34 k' ε k => k' ε s & ~k' ε k Split, 33 35 k' ε s & ~k' ε k => k' ε k Split, 33 Prove: ~k'εk Suppose to the contrary... 36 k' ε k Premise 37 k' ε s & ~k' ε k Detach, 34, 36 38 k' ε s Split, 37 39 ~k' ε k Split, 37 40 k' ε k & ~k' ε k Join, 36, 39 As Required: 41 ~k' ε k Conclusion, 36 42 k' ε s & ~k' ε k Join, 29, 41 43 k' ε k Detach, 35, 42 We obtain the contradiction... 44 ~k' ε k & k' ε k Join, 41, 43 As Required: 45 ALL(f):~[ALL(x):[x ε s => f(x) ε p] & ALL(x):[x ε p => EXIST(x'):[x' ε s & f(x')=x]]] Conclusion, 5 Change quantifier and remove ~~ 46 ~EXIST(f):~~[ALL(x):[x ε s => f(x) ε p] & ALL(x):[x ε p => EXIST(x'):[x' ε s & f(x')=x]]] Quant, 45 47 ~EXIST(f):[ALL(x):[x ε s => f(x) ε p] & ALL(x):[x ε p => EXIST(x'):[x' ε s & f(x')=x]]] Rem DNeg, 46 As Required: 48 ALL(s):ALL(p):[Set(s) & Set(p) & ALL(c):[c ε p <=> Set(c) & ALL(d):[d ε c => d ε s]] => ~EXIST(f):[ALL(x):[x ε s => f(x) ε p] & ALL(x):[x ε p => EXIST(x'):[x' ε s & f(x')=x]]]] Conclusion, 1