Constructing the Postive Rational Numbers Q+ from N Introduction ------------ Here, we construct the set of postive rational numbers qpos from the set of natural numbers using only the axioms of set theory. In DC Proof, there are only 3 ways to construct a set from other sets: 1. The Cartesian Product Axiom 2. The Power Set Axiom 3. The Subset Axiom Each of these axioms are used here. We begin with a list of Peano-like axioms for the set of natural numbers n, with operators + and * defined on n. Then we use the Cartesian Product Axiom to construct the set n2, the set of ordered pairs of natural numbers. Then we use the Power Set Axiom to construct the set pn2, the power set of n2. Finally, we use the Subset Axiom to construct qpos, a subset of pn2 that will comprise the set of postive rational numbers. Informally: 1/2 = {(1,2), (2,4), (3,6)...} 2/3 = {(2,3), (4,6), (6,9)...} etc. Axioms of the natural numbers ----------------------------- Introduce n, 1, +, * 1 Set(n) Axiom 2 1 ε n Axiom Define: '+' on n 3 ALL(a):ALL(b):[a ε n & b ε n => a+b ε n] Axiom 4 ALL(a):[a ε n => ~a+1=1] Axiom 5 ALL(a):ALL(b):[a ε n & b ε n & a+1=b+1 => a=b] Axiom 6 ALL(a):ALL(b):[a ε n & b ε n => a+(b+1)=a+b+1] Axiom Principle of mathematical induction 7 ALL(a):[Set(a) & 1 ε a & ALL(b):[b ε n & b ε a => b+1 ε a] => ALL(b):[b ε n => b ε a]] Axiom Define: '*' on n 8 ALL(a):ALL(b):[a ε n & b ε n => a*b ε n] Axiom 9 ALL(a):[a ε n => a*1=a] Axiom 10 ALL(a):ALL(b):[a ε n & b ε n => a*(b+1)=a*b+a] Axiom Use the Cartesian Product Axiom to construct the set of ordered pairs of natural numbers 11 ALL(a1):ALL(a2):[Set(a1) & Set(a2) => EXIST(b):[Set'(b) & ALL(c1):ALL(c2):[(c1,c2) ε b <=> c1 ε a1 & c2 ε a2]]] Cart Prod 12 ALL(a2):[Set(n) & Set(a2) => EXIST(b):[Set'(b) & ALL(c1):ALL(c2):[(c1,c2) ε b <=> c1 ε n & c2 ε a2]]] U Spec, 11 13 Set(n) & Set(n) => EXIST(b):[Set'(b) & ALL(c1):ALL(c2):[(c1,c2) ε b <=> c1 ε n & c2 ε n]] U Spec, 12 14 Set(n) & Set(n) Join, 1, 1 15 EXIST(b):[Set'(b) & ALL(c1):ALL(c2):[(c1,c2) ε b <=> c1 ε n & c2 ε n]] Detach, 13, 14 16 Set'(n2) & ALL(c1):ALL(c2):[(c1,c2) ε n2 <=> c1 ε n & c2 ε n] E Spec, 15 Define: n2, the set of ordered pairs of natural numbers 17 Set'(n2) Split, 16 18 ALL(c1):ALL(c2):[(c1,c2) ε n2 <=> c1 ε n & c2 ε n] Split, 16 Use the Power Set axiom to construct the powerset of n2 19 ALL(a):[Set'(a) => EXIST(b):[Set(b) & ALL(c):[c ε b <=> Set'(c) & ALL(d1):ALL(d2):[(d1,d2) ε c => (d1,d2) ε a]]]] Power Set 20 Set'(n2) => EXIST(b):[Set(b) & ALL(c):[c ε b <=> Set'(c) & ALL(d1):ALL(d2):[(d1,d2) ε c => (d1,d2) ε n2]]] U Spec, 19 21 EXIST(b):[Set(b) & ALL(c):[c ε b <=> Set'(c) & ALL(d1):ALL(d2):[(d1,d2) ε c => (d1,d2) ε n2]]] Detach, 20, 17 22 Set(pn2) & ALL(c):[c ε pn2 <=> Set'(c) & ALL(d1):ALL(d2):[(d1,d2) ε c => (d1,d2) ε n2]] E Spec, 21 Define: pn2, the power set of n2 23 Set(pn2) Split, 22 24 ALL(c):[c ε pn2 <=> Set'(c) & ALL(d1):ALL(d2):[(d1,d2) ε c => (d1,d2) ε n2]] Split, 22 Use the Subset Axiom to construct the set of postive rational numbers 25 EXIST(sub):[Set(sub) & ALL(a):[a ε sub <=> a ε pn2 & [EXIST(b):EXIST(c):(b,c) ε a & ALL(b):ALL(c):ALL(d):ALL(e):[(b,c) ε a & d ε n & e ε n => [(d,e) ε a <=> b*e=d*c]]]]] Subset, 23 Define: qpos, the set of postive rational numbers Informally: 1/2 = {(1,2), (2,4), (3,6)...} 2/3 = {(2,3), (4,6), (6,9)...} etc. 26 Set(qpos) & ALL(a):[a ε qpos <=> a ε pn2 & [EXIST(b):EXIST(c):(b,c) ε a & ALL(b):ALL(c):ALL(d):ALL(e):[(b,c) ε a & d ε n & e ε n => [(d,e) ε a <=> b*e=d*c]]]] E Spec, 25