Reversibility of Universal Quantifiers Comments (in blue font) ******** Prove: Ax Ay [P(x) & Q(y) -> R(x,y)] -> Ay Ax [P(x) & Q(y) -> R(x,y)] Or, in the DC Proof notation... Prove: ALL(x):ALL(y):[P(x) & Q(y) => R(x,y)]=> ALL(y):ALL(x):[P(x) & Q(y) => R(x,y)] Proof ***** Suppose... 1 ALL(x):ALL(y):[P(x) & Q(y) => R(x,y)] Premise Prove: P(s) & Q(t) => R(s,t) for arbitrary s and t Suppose... 2 P(s) & Q(t) Premise 3 ALL(y):[P(s) & Q(y) => R(s,y)] U Spec, 1 4 P(s) & Q(t) => R(s,t) U Spec, 3 5 R(s,t) Detach, 4, 2 As Required: 6 P(s) & Q(t) => R(s,t) Conclusion, 2 Generalizing... 7 ALL(x):[P(x) & Q(t) => R(x,t)] U Gen, 6 8 ALL(y):ALL(x):[P(x) & Q(y) => R(x,y)] U Gen, 7 As Required: 9 ALL(x):ALL(y):[P(x) & Q(y) => R(x,y)] => ALL(y):ALL(x):[P(x) & Q(y) => R(x,y)] Conclusion, 1