THEOREM

*******

 

ALL(a):ALL(b):[Set(a) & Set(b) => [a=b <=> Subset(a,b) & Subset(b,a)]]

 

 

DEFINTIONS

**********

 

Define: Subset

 

1     ALL(a):ALL(b):[Subset(a,b) <=> ALL(c):[c e a => c e b]]

      Axiom

 

    

     PROOF

     *****

    

     Suppose...

 

      2     Set(x) & Set(y)

            Premise

 

      3     Set(x)

            Split, 2

 

      4     Set(y)

            Split, 2

 

     Apply Set Equality Axiom

 

      5     ALL(a):ALL(b):[Set(a) & Set(b) => [a=b <=> ALL(c):[c e a <=> c e b]]]

            Set Equality

 

      6     ALL(b):[Set(x) & Set(b) => [x=b <=> ALL(c):[c e x <=> c e b]]]

            U Spec, 5

 

      7     Set(x) & Set(y) => [x=y <=> ALL(c):[c e x <=> c e y]]

            U Spec, 6

 

      8     x=y <=> ALL(c):[c e x <=> c e y]

            Detach, 7, 2

 

      9     [x=y => ALL(c):[c e x <=> c e y]]

          & [ALL(c):[c e x <=> c e y] => x=y]

            Iff-And, 8

 

      10    x=y => ALL(c):[c e x <=> c e y]

            Split, 9

 

      11    ALL(c):[c e x <=> c e y] => x=y

            Split, 9

 

         

          '=>'

         

          Prove: x=y => Subset(x,y) & Subset(y,x)

         

          Suppose...

 

            12    x=y

                  Premise

 

            13    ALL(c):[c e x <=> c e y]

                  Detach, 10, 12

 

            14    ALL(b):[Subset(x,b) <=> ALL(c):[c e x => c e b]]

                  U Spec, 1

 

            15    Subset(x,y) <=> ALL(c):[c e x => c e y]

                  U Spec, 14

 

            16    [Subset(x,y) => ALL(c):[c e x => c e y]]

              & [ALL(c):[c e x => c e y] => Subset(x,y)]

                  Iff-And, 15

 

            17    Subset(x,y) => ALL(c):[c e x => c e y]

                  Split, 16

 

            18    ALL(c):[c e x => c e y] => Subset(x,y)

                  Split, 16

 

             

              Prove: ALL(c):[c e x => c e y]

             

              Suppose...

 

                  19    p e x

                        Premise

 

                  20    p e x <=> p e y

                        U Spec, 13

 

                  21    [p e x => p e y] & [p e y => p e x]

                        Iff-And, 20

 

                  22    p e x => p e y

                        Split, 21

 

                  23    p e y => p e x

                        Split, 21

 

                  24    p e y

                        Detach, 22, 19

 

          As Required:

 

            25    ALL(c):[c e x => c e y]

                  4 Conclusion, 19

 

            26    Subset(x,y)

                  Detach, 18, 25

 

            27    ALL(b):[Subset(y,b) <=> ALL(c):[c e y => c e b]]

                  U Spec, 1

 

            28    Subset(y,x) <=> ALL(c):[c e y => c e x]

                  U Spec, 27

 

            29    [Subset(y,x) => ALL(c):[c e y => c e x]]

              & [ALL(c):[c e y => c e x] => Subset(y,x)]

                  Iff-And, 28

 

            30    Subset(y,x) => ALL(c):[c e y => c e x]

                  Split, 29

 

            31    ALL(c):[c e y => c e x] => Subset(y,x)

                  Split, 29

 

             

              Prove: ALL(c):[c e y => c e x]

             

              Suppose...

 

                  32    p e y

                        Premise

 

                  33    p e x <=> p e y

                        U Spec, 13

 

                  34    [p e x => p e y] & [p e y => p e x]

                        Iff-And, 33

 

                  35    p e x => p e y

                        Split, 34

 

                  36    p e y => p e x

                        Split, 34

 

                  37    p e x

                        Detach, 36, 32

 

          As Required:

 

            38    ALL(c):[c e y => c e x]

                  4 Conclusion, 32

 

            39    Subset(y,x)

                  Detach, 31, 38

 

            40    Subset(x,y) & Subset(y,x)

                  Join, 26, 39

 

     As Required:

 

      41    x=y => Subset(x,y) & Subset(y,x)

            4 Conclusion, 12

 

         

          '<='

         

          Prove: Subset(x,y) & Subset(y,x) => x=y

         

          Suppose...

 

            42    Subset(x,y) & Subset(y,x)

                  Premise

 

            43    Subset(x,y)

                  Split, 42

 

            44    Subset(y,x)

                  Split, 42

 

          Apply defintion of Subset

 

            45    ALL(b):[Subset(x,b) <=> ALL(c):[c e x => c e b]]

                  U Spec, 1

 

            46    Subset(x,y) <=> ALL(c):[c e x => c e y]

                  U Spec, 45

 

            47    [Subset(x,y) => ALL(c):[c e x => c e y]]

              & [ALL(c):[c e x => c e y] => Subset(x,y)]

                  Iff-And, 46

 

            48    Subset(x,y) => ALL(c):[c e x => c e y]

                  Split, 47

 

            49    ALL(c):[c e x => c e y] => Subset(x,y)

                  Split, 47

 

            50    ALL(c):[c e x => c e y]

                  Detach, 48, 43

 

          Apply definition of Subset

 

            51    ALL(b):[Subset(y,b) <=> ALL(c):[c e y => c e b]]

                  U Spec, 1

 

            52    Subset(y,x) <=> ALL(c):[c e y => c e x]

                  U Spec, 51

 

            53    [Subset(y,x) => ALL(c):[c e y => c e x]]

              & [ALL(c):[c e y => c e x] => Subset(y,x)]

                  Iff-And, 52

 

            54    Subset(y,x) => ALL(c):[c e y => c e x]

                  Split, 53

 

            55    ALL(c):[c e y => c e x] => Subset(y,x)

                  Split, 53

 

            56    ALL(c):[c e y => c e x]

                  Detach, 54, 44

 

            57    ALL(c):[[c e x => c e y] & [c e y => c e x]]

                  Join, 50, 56

 

            58    ALL(c):[c e x <=> c e y]

                  Iff-And, 57

 

            59    x=y

                  Detach, 11, 58

 

     As Required:

 

      60    Subset(x,y) & Subset(y,x) => x=y

            4 Conclusion, 42

 

      61    [x=y => Subset(x,y) & Subset(y,x)]

          & [Subset(x,y) & Subset(y,x) => x=y]

            Join, 41, 60

 

      62    x=y <=> Subset(x,y) & Subset(y,x)

            Iff-And, 61

 

As Required:

 

63    ALL(a):ALL(b):[Set(a) & Set(b) => [a=b <=> Subset(a,b) & Subset(b,a)]]

      4 Conclusion, 2