Theorem

-------

 

If x and y are sets and xy is the Cartesian product of x and y, then

 

~EXIST(a):EXIST(b):(a,b) e xy <=> ~EXIST(a):a e x | ~EXIST(a):a e y

 

 

Note: This proof was written with the aid of DC Proof 2.0. Download at http://www.dcproof.com

 

 

Notation

--------

 

~     = NOT-operator

&     = AND-operator

|     = OR-operator

=>    = IMPLIES-operator

<=>   = IF-AND-ONLY-IF-operator

ALL   = Universal quantifier

EXIST = Existential quantifier

Set   = "is a set" predicate

Set'  = "is a set of ordered pairs" predicate

 

 

Let x be a set

 

1     Set(x)

      Axiom

 

Let y be a set

 

2     Set(y)

      Axiom

 

Construct the Cartesian product of x and y

 

3     ALL(a1):ALL(a2):[Set(a1) & Set(a2) => EXIST(b):[Set'(b) & ALL(c1):ALL(c2):[(c1,c2) e b <=> c1 e a1 & c2 e a2]]]

      Cart Prod

 

Apply Universal Specification

 

4     ALL(a2):[Set(x) & Set(a2) => EXIST(b):[Set'(b) & ALL(c1):ALL(c2):[(c1,c2) e b <=> c1 e x & c2 e a2]]]

      U Spec, 3

 

5     Set(x) & Set(y) => EXIST(b):[Set'(b) & ALL(c1):ALL(c2):[(c1,c2) e b <=> c1 e x & c2 e y]]

      U Spec, 4

 

Join lines 1 and 2

 

6     Set(x) & Set(y)

      Join, 1, 2

 

Apply Detachment Rule

 

7     EXIST(b):[Set'(b) & ALL(c1):ALL(c2):[(c1,c2) e b <=> c1 e x & c2 e y]]

      Detach, 5, 6

 

Define: xy, the Cartesian product of x and y

 

8     Set'(xy) & ALL(c1):ALL(c2):[(c1,c2) e xy <=> c1 e x & c2 e y]

      E Spec, 7

 

xy is a set of ordered pairs

 

9     Set'(xy)

      Split, 8

 

10    ALL(c1):ALL(c2):[(c1,c2) e xy <=> c1 e x & c2 e y]

      Split, 8

 

    

     Proof

     -----

    

     '=>'

    

     Prove: ~EXIST(a):EXIST(b):(a,b) e xy

            => ~EXIST(a):a e x | ~EXIST(a):a e y

    

     Suppose...

 

      11    ~EXIST(a):EXIST(b):(a,b) e xy

            Premise

 

         

          Prove: ~EXIST(a):a e x | ~EXIST(a):a e y

         

          Suppose to contrary...

 

            12    ~[~EXIST(a):a e x | ~EXIST(a):a e y]

                  Premise

 

          Apply De Morgan's Law

 

            13    ~~[~~EXIST(a):a e x & ~~EXIST(a):a e y]

                  DeMorgan, 12

 

            14    ~~EXIST(a):a e x & ~~EXIST(a):a e y

                  Rem DNeg, 13

 

            15    EXIST(a):a e x & ~~EXIST(a):a e y

                  Rem DNeg, 14

 

            16    EXIST(a):a e x & EXIST(a):a e y

                  Rem DNeg, 15

 

            17    EXIST(a):a e x

                  Split, 16

 

            18    EXIST(a):a e y

                  Split, 16

 

          Define: p

 

            19    p e x

                  E Spec, 17

 

          Define: q

 

            20    q e y

                  E Spec, 18

 

          Apply definition of xy

 

            21    ALL(c2):[(p,c2) e xy <=> p e x & c2 e y]

                  U Spec, 10

 

            22    (p,q) e xy <=> p e x & q e y

                  U Spec, 21

 

            23    [(p,q) e xy => p e x & q e y]

              & [p e x & q e y => (p,q) e xy]

                  Iff-And, 22

 

            24    (p,q) e xy => p e x & q e y

                  Split, 23

 

            25    p e x & q e y => (p,q) e xy

                  Split, 23

 

            26    p e x & q e y

                  Join, 19, 20

 

            27    (p,q) e xy

                  Detach, 25, 26

 

          Apply Existential Generalization

 

            28    EXIST(b):(p,b) e xy

                  E Gen, 27

 

            29    EXIST(a):EXIST(b):(a,b) e xy

                  E Gen, 28

 

          Obtain the contradiction...

 

            30    EXIST(a):EXIST(b):(a,b) e xy

              & ~EXIST(a):EXIST(b):(a,b) e xy

                  Join, 29, 11

 

     Apply Conclusion Rule

 

      31    ~~[~EXIST(a):a e x | ~EXIST(a):a e y]

            4 Conclusion, 12

 

     As Required:

 

      32    ~EXIST(a):a e x | ~EXIST(a):a e y

            Rem DNeg, 31

 

'=>'

 

As Required:

 

33    ~EXIST(a):EXIST(b):(a,b) e xy

     => ~EXIST(a):a e x | ~EXIST(a):a e y

      4 Conclusion, 11

 

     '<='

    

     Prove: ~EXIST(a):a e x | ~EXIST(a):a e y

            => ~EXIST(a):EXIST(b):(a,b) e xy

    

     Suppose...

 

      34    ~EXIST(a):a e x | ~EXIST(a):a e y

            Premise

 

          Case 1

         

          Prove: ~EXIST(a):a e x => ~EXIST(a):EXIST(b):(a,b) e xy

         

          Suppose...

 

            35    ~EXIST(a):a e x

                  Premise

 

             

              Prove: ~EXIST(a):EXIST(b):(a,b) e xy

             

              Suppose to the contrary...

 

                  36    (p,q) e xy

                        Premise

 

              Apply definition of xy

 

                  37    ALL(c2):[(p,c2) e xy <=> p e x & c2 e y]

                        U Spec, 10

 

                  38    (p,q) e xy <=> p e x & q e y

                        U Spec, 37

 

                  39    [(p,q) e xy => p e x & q e y]

                   & [p e x & q e y => (p,q) e xy]

                        Iff-And, 38

 

                  40    (p,q) e xy => p e x & q e y

                        Split, 39

 

                  41    p e x & q e y => (p,q) e xy

                        Split, 39

 

                  42    p e x & q e y

                        Detach, 40, 36

 

                  43    p e x

                        Split, 42

 

                  44    q e y

                        Split, 42

 

              Apply Existential Generalization

 

                  45    EXIST(a):a e x

                        E Gen, 43

 

              Obtain the contradiction...

 

                  46    EXIST(a):a e x & ~EXIST(a):a e x

                        Join, 45, 35

 

          As Required:

 

            47    ~EXIST(a):EXIST(b):(a,b) e xy

                  4 Conclusion, 36

 

     Case 1

    

     As Required:

 

      48    ~EXIST(a):a e x => ~EXIST(a):EXIST(b):(a,b) e xy

            4 Conclusion, 35

 

          Case 2

         

          Prove: ~EXIST(a):a e y => ~EXIST(a):EXIST(b):(a,b) e xy

         

          Suppose...

 

            49    ~EXIST(a):a e y

                  Premise

 

             

              Prove: ~EXIST(a):EXIST(b):(a,b) e xy

             

              Suppose to the contrary...

 

                  50    (p,q) e xy

                        Premise

 

              Apply definition of xy

 

                  51    ALL(c2):[(p,c2) e xy <=> p e x & c2 e y]

                        U Spec, 10

 

                  52    (p,q) e xy <=> p e x & q e y

                        U Spec, 51

 

                  53    [(p,q) e xy => p e x & q e y]

                   & [p e x & q e y => (p,q) e xy]

                        Iff-And, 52

 

                  54    (p,q) e xy => p e x & q e y

                        Split, 53

 

                  55    p e x & q e y => (p,q) e xy

                        Split, 53

 

                  56    p e x & q e y

                        Detach, 54, 50

 

                  57    p e x

                        Split, 56

 

                  58    q e y

                        Split, 56

 

              Apply Existential Generalization

 

                  59    EXIST(a):a e y

                        E Gen, 58

 

              Obtain the contradiction...

 

                  60    EXIST(a):a e y & ~EXIST(a):a e y

                        Join, 59, 49

 

          As Required:

 

            61    ~EXIST(a):EXIST(b):(a,b) e xy

                  4 Conclusion, 50

 

     Case 2

    

     As Required:

 

      62    ~EXIST(a):a e y => ~EXIST(a):EXIST(b):(a,b) e xy

            4 Conclusion, 49

 

     Join previous results

 

      63    [~EXIST(a):a e x => ~EXIST(a):EXIST(b):(a,b) e xy]

          & [~EXIST(a):a e y => ~EXIST(a):EXIST(b):(a,b) e xy]

            Join, 48, 62

 

     Apply Cases Rule

 

      64    ~EXIST(a):EXIST(b):(a,b) e xy

            Cases, 34, 63

 

'<='

 

As Required:

 

65    ~EXIST(a):a e x | ~EXIST(a):a e y

     => ~EXIST(a):EXIST(b):(a,b) e xy

      4 Conclusion, 34

 

Join previous results

 

66    [~EXIST(a):EXIST(b):(a,b) e xy

     => ~EXIST(a):a e x | ~EXIST(a):a e y]

     & [~EXIST(a):a e x | ~EXIST(a):a e y

     => ~EXIST(a):EXIST(b):(a,b) e xy]

      Join, 33, 65

 

Apply Iff-And Rule

 

As Required:

 

67    ~EXIST(a):EXIST(b):(a,b) e xy

     <=> ~EXIST(a):a e x | ~EXIST(a):a e y

      Iff-And, 66